IEEE/CAA Journal of Automatica Sinica
Citation: | Xuesong Li, Yating Liu, Kunfeng Wang and Fei-Yue Wang, "A Recurrent Attention and Interaction Model for Pedestrian Trajectory Prediction," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1361-1370, Sept. 2020. doi: 10.1109/JAS.2020.1003300 |
[1] |
F. Large, D. Vasquez, T. Fraichard, and C. Laugier, “Avoiding cars and pedestrians using velocity obstacles and motion prediction,” in Proc. IEEE Intelligent Vehicles Symp., Parma, Italy: IEEE, Jun. 2004. pp. 375−379.
|
[2] |
S. Thompson, T. Horiuchi, and S. Kagami, “A probabilistic model of human motion and navigation intent for mobile robot path planning,” in Proc. 4th IEEE Int. Conf. Autonomous Robots and Agents, Wellington, New Zealand: IEEE, 2009, pp. 663−668.
|
[3] |
D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical features of escape panic,” Nature, vol. 407, no. 6803, pp. 487–490, Sep. 2000. doi: 10.1038/35035023
|
[4] |
T. Fernando, S. Denman, S. Sridharan, and C. Fookes, “Soft + Hardwired attention: An LSTM framework for human trajectory prediction and abnormal event detection,” Neural Netw., vol. 108, pp. 466–478, Dec. 2018. doi: 10.1016/j.neunet.2018.09.002
|
[5] |
D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Phys. Rev. E, vol. 51, no. 5, pp. 4282–4286, May 1995. doi: 10.1103/PhysRevE.51.4282
|
[6] |
B. T. Morris and M. M. Trivedi, “Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 11, pp. 2287–2301, Nov. 2011. doi: 10.1109/TPAMI.2011.64
|
[7] |
A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, F. F. Li, and S. Savarese, “Social LSTM: Human trajectory prediction in crowded spaces,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, pp. 961−971.
|
[8] |
N. Bisagno, B. Zhang, and N. Conci, “Group LSTM: Group trajectory prediction in crowded scenarios,” in Proc. European Conf. Computer Vision, Munich, Germany, 2018, pp. 213−225.
|
[9] |
A. Gupta, J. Johnson, F. F. Li, S. Savarese, and A. Alahi, “Social GAN: Socially acceptable trajectories with generative adversarial networks,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 2255−2264.
|
[10] |
A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and S. Savarese, “SoPhie: An attentive GAN for predicting paths compliant to social and physical constraints,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 1349−1358.
|
[11] |
J. Amirian, J. B. Hayet, and J. Pettré, “Social ways: Learning multi-modal distributions of pedestrian trajectories with GANs,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 2964−2972.
|
[12] |
J. W. Liang, L. Jiang, J. C. Niebles, A. G. Hauptmann, and F. F. Li, “Peeking into the future: Predicting future person activities and locations in videos,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 5718−5727.
|
[13] |
M. Huynh and G. Alaghband, “Trajectory prediction by coupling scene-LSTM with human movement LSTM,” in Proc. Int. Symp. Visual Computing, Lake Tahoe, USA: Springer, Cham, 2019, pp. 244−259.
|
[14] |
H. Minoura, T. Hirakawa, T. Yamashita, and H. Fujiyoshi, “Path predictions using object attributes and semantic environment,” in Proc. 14th Int. Conf. Computer Vision Theory and Applications, Prague, Czech Republic, 2019, pp. 19−26.
|
[15] |
S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, “You’ll never walk alone: Modeling social behavior for multi-target tracking,” in Proc. 12th IEEE Int. Conf. Computer Vision, Kyoto, Japan, 2009, pp. 261−268.
|
[16] |
A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,” Comput. Graph. Forum, vol. 26, no. 3, pp. 655–664, Sep. 2007. doi: 10.1111/j.1467-8659.2007.01089.x
|
[17] |
J. Jo, S. Hwang, S. Lee, and Y. Lee, “Multi-mode LSTM network for energy-efficient speech recognition,” in Proc. Int. SoC Design Conf., Daegu, Korea (South), 2018, pp. 133−134.
|
[18] |
R. M. Li, C. Y. Jiang, F. H. Zhu, and X. L. Chen, “Traffic flow data forecasting based on interval type-2 fuzzy sets theory,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 141–148, Apr. 2016. doi: 10.1109/JAS.2016.7451101
|
[19] |
R. Achkar, F. Elias-Sleiman, H. Ezzidine, and N. Haidar, “Comparison of BPA-MLP and LSTM-RNN for stocks prediction,” in Proc. 6th Int. Symp. Computational and Business Intelligence, Basel, Switzerland, 2018, pp. 48−51.
|
[20] |
F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction with LSTM,” in Proc. 9th Int. Conf. Artificial Neural Networks, Edinburgh, UK, 1999, pp. 850−855.
|
[21] |
J. Chung, C. Gulcehre, K. H. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” arXiv preprint arXiv: 1412.3555, 2014.
|
[22] |
P. Zhang, W. L. Ouyang, P. F. Zhang, J. R. Xue, and N. N. Zheng, “SR-LSTM: State refinement for LSTM towards pedestrian trajectory prediction,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 12077−12086.
|
[23] |
Y. Y. Xu, Z. X. Piao, and S. H. Gao, “Encoding crowd interaction with deep neural network for pedestrian trajectory prediction,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 5275−5284.
|
[24] |
X. H. Wang and H. B. Duan, “Hierarchical visual attention model for saliency detection inspired by avian visual pathways,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 540–552, Mar. 2019. doi: 10.1109/JAS.2017.7510664
|
[25] |
F. Zheng, C. Deng, X. Sun, X. Y. Jiang, X. W. Guo, Z. Q. Yu, F. Y. Huang, and R. R. Ji, “Pyramidal person Re-IDentification via multi-loss dynamic training,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 8506−8514.
|
[26] |
P. Chen, X. Y. Xu, and C. Deng, “Deep view-aware metric learning for person re-identification,” in Proc. 27th Int. Joint Conf. Artificial Intelligence, Stockholm, Sweden, 2018, pp. 620−626.
|
[27] |
C. H. Shan, J. B. Zhang, Y. J. Wang, and L. Xie, “Attention-based end-to-end speech recognition on voice search,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Calgary, Canada, 2018, pp. 4764−4768.
|
[28] |
P. Zhou, W. Shi, J. Tian, Z. Y. Qi, B. C. Li, H. W. Hao, and B. Xu, “Attention-based bidirectional long short-term memory networks for relation classification,” in Proc. 54th Annu. Meeting of the Association for Computational Linguistics, Berlin, Germany, 2016, pp. 207−212.
|
[29] |
A. Al-Molegi, M. Jabreel, and A. Martínez-Ballesté, “Move, attend and predict: An attention-based neural model for people’s movement prediction,” Pattern Recognit. Lett., vol. 112, pp. 34–40, Sep. 2018. doi: 10.1016/j.patrec.2018.05.015
|
[30] |
S. Haddad, M. Q. Wu, H. Wei, and S. K. Lam, “Situation-aware pedestrian trajectory prediction with spatio-temporal attention model,” in Proc. 24th Computer Vision Winter Workshop, Stift Vorau, Austria, 2019.
|
[31] |
A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling attention in human crowds,” in Proc. IEEE Int. Conf. Robotics and Autom., Brisbane, Australia, 2018, pp. 4601−4607.
|
[32] |
Y. L. Zhu, D. H. Qian, D. C. Ren, and H. X. Xia, “StarNet: Pedestrian trajectory prediction using deep neural network in star topology,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Macau, China, 2019, pp. 8075−8080.
|
[33] |
S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proc. 32nd Int. Conf. Machine Learning, Lille, France, 2015.
|