IEEE/CAA Journal of Automatica Sinica
Citation: | Wangli He, Zekun Mo, Qing-Long Han and Feng Qian, "Secure Impulsive Synchronization in Lipschitz-Type Multi-Agent Systems Subject to Deception Attacks," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1326-1334, Sept. 2020. doi: 10.1109/JAS.2020.1003297 |
[1] |
X.-M. Zhang, Q.-L. Han, X. H. Ge, D. R. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2020. doi: 10.1109/JAS.2019.1911861
|
[2] |
W. He, T. Luo, Y. Tang, W. Du, Y.-C. Tian, and F. Qian, “Secure communication based on quantized synchronization of chaotic neural networks under an event-triggered strategy,” IEEE Trans. Neural Netw. Learn. Syst., Oct. 2019.
|
[3] |
Y. C. Cao, W. W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of distributed multi-agent coordination,” IEEE Trans. Ind. Inform., vol. 9, no. 1, pp. 427–438, Feb. 2013. doi: 10.1109/TII.2012.2219061
|
[4] |
G. H. Wen, W. W. Yu, X. H. Yu, and J. H. Lv, “Complex cyber-physical networks: From cybersecurity to security control,” J. Syst. Sci. Complex., vol. 30, no. 1, pp. 46–67, Feb. 2017. doi: 10.1007/s11424-017-6181-x
|
[5] |
W. L. He, B. Xu, Q.-L. Han, and F. Qian “Adaptive consensus control of linear multiagent systems with dynamic event-triggered strategies,” IEEE Trans. Cybern., Jun. 2019.
|
[6] |
E. M. Amullen, S. Shetty, and L. H. Keel, “Secured formation control for multi-agent systems under DoS attacks,” in Proc. IEEE Symp. Technol. Homel. Secur., HST, pp. 1–6, Sep. 2016.
|
[7] |
G. H. Wen, Z. S. Duan, G. R. Chen, and W. W. Yu, “Consensus tracking of multi-agent systems with Lipschitz-type node dynamics and switching topologies,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 61, no. 2, pp. 499–511, Feb. 2014. doi: 10.1109/TCSI.2013.2268091
|
[8] |
Z. Zhu, Y. Pan, Q. Zhou, and C. Lu, “Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis,”IEEE Trans. Fuzzy Syst., Feb. 2020.
|
[9] |
A. Bonci, M. Pirani, and S. Longhi, “Tiny cyber-physical systems for performance improvement in the factory of the future,” IEEE Trans. Ind. Inform., vol. 15, no. 3, pp. 1598–1608, Jul. 2018.
|
[10] |
H. Sandberg, S. Amin, and K. H. Johansson, “Cyber-physical security in networked control systems: An introduction to the issue,” IEEE Control Syst. Mag., vol. 35, no. 1, pp. 20–23, Feb. 2015. doi: 10.1109/MCS.2014.2364708
|
[11] |
Y. Mo, H. J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perring, and B. Sinopoli, “Cyber-physical security of a smart grid infrastructure,” Proc. IEEE, vol. 100, no. 1, pp. 195–209, Jan. 2012. doi: 10.1109/JPROC.2011.2161428
|
[12] |
A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards survivable cyber-physical systems,” in Proc. Int. Conf. Distrib. Comput. Syst., pp. 495–500, Jun. 2008.
|
[13] |
H. T. Sun, C. Peng, T. C. Yang, H. Zhang, and W. L. He, “Resilient control of networked control systems with stochastic denial of service attacks,” Neurocomputing, vol. 270, pp. 170–177, Dec. 2017. doi: 10.1016/j.neucom.2017.02.093
|
[14] |
A. Y. Lu and G. H. Yang, “Distributed consensus control for multiagent systems under denial-of-service,” Inf. Sci., vol. 439, pp. 95–107, May 2018.
|
[15] |
D. Zhang, L. Liu, and G. Feng, “Consensus of heterogeneous linear multiagent systems subject to a periodic sampled-data and DoS attack,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1501–1511, Apr. 2019. doi: 10.1109/TCYB.2018.2806387
|
[16] |
Z. Feng, G. H. Wen, and G. Q. Hu, “Distributed secure coordinated control for multiagent systems under strategic attacks,” IEEE Trans. Cybern., vol. 47, no. 5, pp. 1273–1284, May 2017. doi: 10.1109/TCYB.2016.2544062
|
[17] |
Z. Feng, G. Q. Hu, and G. H. Wen, “Distributed consensus tracking for multi-agent systems under two types of attacks,” Int. J. Robust Nonlinear Control, vol. 26, no. 5, pp. 896–918, Mar. 2016. doi: 10.1002/rnc.3342
|
[18] |
Y. Wan, J. D. Cao, G. R. Chen, and W. Huang, “Distributed observerbased cyber-security control of complex dynamical networks,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 64, no. 11, pp. 2966–2975, Nov. 2017. doi: 10.1109/TCSI.2017.2708113
|
[19] |
Z. S. Wang, J. Sun, and H. G. Zhang, “Stability analysis of T-S fuzzy control system with sampled-dropouts based on time-varying Lyapunov function method,”IEEE Trans. Syst., Man, Cybern., Syst., Apr. 2018.
|
[20] |
J. Sun and Z. S. Wang, “Consensus of multi-agent systems with intermittent communications via sampling time unit approach,” Neurocomputing, vol. 397, pp. 149–159, Jul. 2020. doi: 10.1016/j.neucom.2020.02.055
|
[21] |
S. Wu, Z. Y. Guo, D. W. Shi, K. H. Johansson, and L. Shi, “Optimal innovation-based deception attack on remote state estimation,” in Proc. American Control Conf., pp. 3017–3022, Jul. 2017.
|
[22] |
Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estimation in electric power grids,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 1, pp. 21–32, Jun. 2011.
|
[23] |
R. L. Deng and H. Liang, “False data injection attacks with limited susceptance information and new countermeasures in smart grid,” IEEE Trans. Ind. Inform., vol. 15, no. 3, pp. 1619–1628, Mar. 2019. doi: 10.1109/TII.2018.2863256
|
[24] |
A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Unmanned aircraft capture and control via GPS spoofing,” J. Field Robot., vol. 31, no. 4, pp. 617–636, Aug. 2014. doi: 10.1002/rob.21513
|
[25] |
H. Li, Y. Wu, and M. Chen, “Adaptive fault-tolerant tracking control for discrete-time multiagent systems via reinforcement learning algorithm,” IEEE Trans. Cybern., May. 2020.
|
[26] |
Z. Y. Guo, D. W. Shi, K. H. Johansson, and L. Shi, “Optimal linear cyber-attack on remote state estimation,” IEEE Trans. Control Netw. Syst., vol. 4, no. 1, pp. 4–13, Mar. 2017. doi: 10.1109/TCNS.2016.2570003
|
[27] |
Y. Z. Li, L. Shi, and T. W. Chen, “Detection against linear deception attacks on multi-sensor remote state estimation,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 846–856, Sep. 2018. doi: 10.1109/TCNS.2017.2648508
|
[28] |
L. F. Ma, Z. D. Wang, and Y. Yuan, “Consensus control for nonlinear multi-agent systems subject to deception attacks,” in Proc. Int. Conf. Autom. Comput., ICAC, pp. 21–26, Oct. 2016.
|
[29] |
A. Mustafa and H. Modares, “Attack analysis and resilient control design for discrete-time distributed multi-agent systems,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 369–376, Apr. 2020. doi: 10.1109/LRA.2019.2959726
|
[30] |
J. Q. Lu, J. Kurths, J. D. Cao, N. Mahdavi, and C. Huang, “Synchronization control for nonlinear stochastic dynamical networks: Pinning impulsive strategy,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 2, pp. 285–292, Feb. 2012. doi: 10.1109/TNNLS.2011.2179312
|
[31] |
N. Mahdavi, M. B. Menhaj, J. Kurths, J. Q. Lu, and A. Afshar, “Pinning impulsive synchronization of complex dynamical networks,” Int. J. Bifurcation Chaos, vol. 22, no. 10, pp. 1250239, Oct. 2012.
|
[32] |
W. L. He, F. Qian, J. Lam, G. R. Chen, Q.-L. Han, and J. Kurths, “Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control,” Automatica, vol. 62, pp. 249–262, Dec. 2015. doi: 10.1016/j.automatica.2015.09.028
|
[33] |
W. L. He, G. R. Chen, Q.-L. Han, and F. Qian, “Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control,” Inf. Sci., vol. 380, pp. 145–158, Feb. 2017. doi: 10.1016/j.ins.2015.06.005
|
[34] |
W. L. He, F. Qian, Q.-L. Han, and G. R. Chen, “Almost sure stability of nonlinear systems under random and impulsive sequential attacks,” IEEE Trans. Autom. Control, Feb. 2020.
|
[35] |
X. S. Yang, X. D. Li, J. Q. Lu, and Z. S. Cheng, “Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control,” IEEE Trans. Cybern., Sep. 2019.
|
[36] |
W. L. He, X. Y. Gao, W. M. Zhong, and F. Qian, “Secure impulsive synchronization control of multi-agent systems under deception attacks,” Inf. Sci., vol. 459, pp. 354–368, Aug. 2018. doi: 10.1016/j.ins.2018.04.020
|