A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 5
Sep.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Ya Zhang, Lishuang Du and Frank L. Lewis, "Stochastic DoS Attack Allocation Against Collaborative Estimation in Sensor Networks," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1225-1234, Sept. 2020. doi: 10.1109/JAS.2020.1003285
Citation: Ya Zhang, Lishuang Du and Frank L. Lewis, "Stochastic DoS Attack Allocation Against Collaborative Estimation in Sensor Networks," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1225-1234, Sept. 2020. doi: 10.1109/JAS.2020.1003285

Stochastic DoS Attack Allocation Against Collaborative Estimation in Sensor Networks

doi: 10.1109/JAS.2020.1003285
Funds:  This work was supported by the National Natural Science Foundation (NNSF) of China (61973082) and Six Talent Peaks Project in Jiangsu Province (XYDXX-005)
More Information
  • In this paper, denial of service (DoS) attack management for destroying the collaborative estimation in sensor networks and minimizing attack energy from the attacker perspective is studied. In the communication channels between sensors and a remote estimator, the attacker chooses some channels to randomly jam DoS attacks to make their packets randomly dropped. A stochastic power allocation approach composed of three steps is proposed. Firstly, the minimum number of channels and the channel set to be attacked are given. Secondly, a necessary condition and a sufficient condition on the packet loss probabilities of the channels in the attack set are provided for general and special systems, respectively. Finally, by converting the original coupling nonlinear programming problem to a linear programming problem, a method of searching attack probabilities and power to minimize the attack energy is proposed. The effectiveness of the proposed scheme is verified by simulation examples.

     

  • loading
  • [1]
    X. M. Zhang, Q. L. Han, X. H. Ge, D. R. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2020. doi: 10.1109/JAS.2019.1911861
    [2]
    S. L. Sun and Z. L. Deng, “Multi-sensor optimal information fusion Kalman filter,” Automatica, vol. 40, no. 6, pp. 1017–1023, Jun. 2004. doi: 10.1016/j.automatica.2004.01.014
    [3]
    I. Bahceci and A. K. Khandani, “Linear estimation of correlated data in wireless sensor networks with optimum power allocation and analog modulation,” IEEE Trans. Commun., vol. 56, no. 7, pp. 1146–1156, Jul. 2008.
    [4]
    Y. L. Mo, R. Ambrosino, and B. Sinopoli, “Sensor selection strategies for state estimation in energy constrained wireless sensor networks,” Automatica, vol. 47, no. 7, pp. 1330–1338, Jul. 2011. doi: 10.1016/j.automatica.2011.02.001
    [5]
    G. Battistelli, L. Chisci, G. Mugnai, A. Farina, and A. Graziano, “Consensus-based linear and nonlinear filtering,” IEEE Trans. Autom. Control, vol. 60, no. 5, pp. 1410–1415, May 2015. doi: 10.1109/TAC.2014.2357135
    [6]
    X. X. Guo, A. S. Leong, and S. Dey, “Estimation in wireless sensor networks with security constraints,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 2, pp. 544–561, Apr. 2017. doi: 10.1109/TAES.2017.2649178
    [7]
    Y. Zhang and Y. P. Tian, “A fully distributed weight design approach to consensus Kalman filtering for sensor networks,” Automatica, vol. 104, pp. 34–40, Jun. 2019. doi: 10.1016/j.automatica.2019.02.052
    [8]
    Y. L. Zou, J. Zhu, X. B. Wang, and L. Hanzo, “A survey on wireless security: Technical challenges, recent advances, and future trends,” Proc. IEEE, vol. 104, no. 9, pp. 1727–1765, Sep. 2016. doi: 10.1109/JPROC.2016.2558521
    [9]
    S. Amin, A. A. Cárdenas, and S. S. Sastry, “Safe and secure networked control systems under denial-of-service attacks,” in Hybrid Systems: Computation and Control, R. Majumdar and P. Tabuada, Eds. Heidelberg, Germany: Springer, 2009, pp. 31-45.
    [10]
    D. Zhang, L. Liu, and G. Feng, “Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and DoS attack,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1501–1511, Apr. 2019. doi: 10.1109/TCYB.2018.2806387
    [11]
    J. Milosevic, T. Tanaka, H. Sandberg, and K. H. Johansson, “Analysis and mitigation of bias injection attacks against a Kalman filter,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 8393–8398, Jul. 2017. doi: 10.1016/j.ifacol.2017.08.1564
    [12]
    D. W. Shi, R. J. Elliott, and T. W. Chen, “On finite-state stochastic modeling and secure estimation of cyber-physical systems,” IEEE Trans. Autom. Control, vol. 62, no. 1, pp. 65–80, Jan. 2017. doi: 10.1109/TAC.2016.2541919
    [13]
    B. Chen, D. W. C. Ho, G. Q. Hu, and L. Yu, “Secure fusion estimation for bandwidth constrained cyber-physical systems under replay attacks,” IEEE Trans. Cybern., vol. 48, no. 6, pp. 1862–1876, Jun. 2018. doi: 10.1109/TCYB.2017.2716115
    [14]
    B. Chen, D. W. C. Ho, W. A. Zhang, and L. Yu, “Distributed dimensionality reduction fusion estimation for cyber-physical systems under DoS attacks,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 49, no. 2, pp. 455–468, Feb. 2019. doi: 10.1109/TSMC.2017.2697450
    [15]
    Q. Y. Liu, Z. D. Wang, X. He, and D. H. Zhou, “Event-based recursive distributed filtering over wireless sensor networks,” IEEE Trans. Autom. Control, vol. 60, no. 9, pp. 2470–2475, Sep. 2015. doi: 10.1109/TAC.2015.2390554
    [16]
    W. Yang, L. Lei, and C. Yang, “Event-based distributed state estimation under deception attack,” Neurocomputing, vol. 270, pp. 145–151, Dec. 2017. doi: 10.1016/j.neucom.2016.12.109
    [17]
    A. S. Leong, S. Dey, and D. E. Quevedo, “Transmission scheduling for remote state estimation and control with an energy harvesting sensor,” Automatica, vol. 91, pp. 54–60, May 2018. doi: 10.1016/j.automatica.2018.01.027
    [18]
    F. X. Wen and Z. M. Wang, “Distributed Kalman filtering for robust state estimation over wireless sensor networks under malicious cyber attacks,” Digit. Signal Process., vol. 78, pp. 92–97, Jul. 2018. doi: 10.1016/j.dsp.2018.03.002
    [19]
    Y. P. Guan and X. H. Ge, “Distributed secure estimation over wireless sensor networks against random multichannel jamming attacks,” IEEE Access, vol. 5, pp. 10858–10870, Jun. 2017. doi: 10.1109/ACCESS.2017.2713807
    [20]
    X. H. Ge, Q. L. Han, M. Y. Zhong, and X. M. Zhang, “Distributed Krein space-based attack detection over sensor networks under deception attacks,” Automatica, vol. 109, pp. 108557, Nov. 2019. doi: 10.1016/j.automatica.2019.108557
    [21]
    S. Y. Xiao, Q. L. Han, X. H. Ge, and Y. J. Zhang, “Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks,” IEEE Trans. Cybern., vol. 50, no. 3, pp. 1220–1229, Mar. 2020. doi: 10.1109/TCYB.2019.2900478
    [22]
    D. J. Du, X. Li, W. T. Li, R. Chen, M. R. Fei, and L. Wu, “ADMM-based distributed state estimation of smart grid under data deception and denial of service attacks,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 49, no. 8, pp. 1698–1711, Aug. 2019. doi: 10.1109/TSMC.2019.2896292
    [23]
    J. H. Qin, M. L. Li, L. Shi, and X. H. Yu, “Optimal denial-of-service attack scheduling with energy constraint over packet-dropping networks,” IEEE Trans. Autom. Control, vol. 63, no. 6, pp. 1648–1663, Jun. 2018. doi: 10.1109/TAC.2017.2756259
    [24]
    K. M. Ding, Y. Z. Li, D. E. Quevedo, S. Dey, and L. Shi, “A multi-channel transmission schedule for remote state estimation under DoS attacks,” Automatica, vol. 78, pp. 194–201, Apr. 2017. doi: 10.1016/j.automatica.2016.12.020
    [25]
    X. H. Cao and C. Y. Sun, “Probabilistic denial of service attack against remote state estimation over a Markov channel in cyber-physical systems,” in Proc. 11th Asian Control Conf., Gold Coast, Australia, 2017, 17–20.
    [26]
    Y. Z. Li, L. Shi, P. Cheng, J. M. Chen, and D. E. Quevedo, “Jamming attacks on remote state estimation in cyber-physical systems: A game-theoretic approach,” IEEE Trans. Autom. Control, vol. 60, no. 10, pp. 2831–2836, Oct. 2015. doi: 10.1109/TAC.2015.2461851
    [27]
    H. Zhang, P. Cheng, L. Shi, and J. M. Chen, “Optimal Denial-of-Service attack scheduling with energy constraint,” IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 3023–3028, Nov. 2015. doi: 10.1109/TAC.2015.2409905
    [28]
    H. Zhang, Y. F. Qi, J. F. Wu, L. K. Fu, and L. D. He, “DoS attack energy management against remote state estimation,” IEEE Trans. Control Netw. Syst., vol. 5, no. 1, pp. 383–394, Mar. 2018. doi: 10.1109/TCNS.2016.2614099
    [29]
    C. Yang, W. Yang, and H. B. Shi, “DoS attack in centralised sensor network against state estimation,” IET Control Theory Appl., vol. 12, no. 9, pp. 1244–1253, Jun. 2018. doi: 10.1049/iet-cta.2017.0819
    [30]
    R. A. Poisel, Modern Communications Jamming: Principles and Techniques. Norwood, USA: Artech House, 2011.
    [31]
    B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1453–1464, Sep. 2004. doi: 10.1109/TAC.2004.834121
    [32]
    L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry, “Foundations of control and estimation over lossy networks,” Proc. IEEE, vol. 95, no. 1, pp. 163–187, Jan. 2007. doi: 10.1109/JPROC.2006.887306
    [33]
    R. W. Eustace, B. A. Woodyatt, G. L. Merrington, and A. Runacres, “Fault signatures obtained from fault implant tests on an F404 engine,” J. Eng. Gas Turbines Power, vol. 116, no. 1, pp. 178–183, Jan. 1994. doi: 10.1115/1.2906789

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (1643) PDF downloads(109) Cited by()

    Highlights

    • Stochastic DoS attack allocation in networks with multiple sensors is studied.
    • The minimum number of channels needed to attack and how to select them are given.
    • The attack probabilities and power with minimum energy consumption are proposed.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return