IEEE/CAA Journal of Automatica Sinica
Citation: | Jing Huang, Yimin Chen, Xiaoyan Peng, Lin Hu and Dongpu Cao, "Study on the Driving Style Adaptive Vehicle Longitudinal Control Strategy," IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1107-1115, July 2020. doi: 10.1109/JAS.2020.1003261 |
[1] |
F. Jiménez, J. E. Naranjo, J. J. Anaya, F. García, A. Ponz, and J. M. Armingol, “Advanced driver assistance system for road environments to improve safety and efficiency,” Trans. Res. Procedia, vol. 14, pp. 2245–2254, 2016. doi: 10.1016/j.trpro.2016.05.240
|
[2] |
R. Yasrab, N. J. Gu, and X. C. Zhang, “An encoder-decoder based convolution neural network (CNN) for future advanced driver assistance system (ADAS),” Appl. Sci., vol. 7, no. 4, pp. 312, Mar. 2017. doi: 10.3390/app7040312
|
[3] |
J. Huang, Z. X. Ji, X. Y. Peng, and L. Hu, “Driving style adaptive lane-changing trajectory planning and control,” China J. Highway Transport, vol. 32, no. 6, pp. 226–239, 247, Jun. 2019.
|
[4] |
H. M. Xiong, L. N. Boyle, J. Moeckli, B. R. Dow, and T. L. Brown, “Use patterns among early adopters of adaptive cruise control,” Hum. Factors:J. Hum. Factors Ergon. Soc., vol. 54, no. 5, pp. 722–733, Feb. 2012. doi: 10.1177/0018720811434512
|
[5] |
L. Hu, X. T. Hu, J. Wan, M. Lin, and J. Huang, “The injury epidemiology of adult riders in vehicle-two-wheeler crashes in China, Ningbo, 2011–2015,” J. Saf. Res., vol. 72, pp. 21–28, Feb. 2020. doi: 10.1016/j.jsr.2019.12.011
|
[6] |
L. Hu, J. Ou, J. Huang, Y. M. Chen, and D. P. Cao, “A review of research on traffic conflicts based on intelligent vehicles,” IEEE Access, vol. 8, pp. 24471–24483, Jan. 2020. doi: 10.1109/ACCESS.2020.2970164
|
[7] |
F. M. Poó, O. Taubman-Ben-Ari, R. D. Ledesma, and C. M. Díaz-Lázaro, “Reliability and validity of a Spanish-language version of the multidimensional driving style inventory,” Trans. Res. Part F:Traffic Psychol. Behav., vol. 17, pp. 75–87, Feb. 2013. doi: 10.1016/j.trf.2012.10.003
|
[8] |
S. Moon and K. Yi, “Human driving data-based design of a vehicle adaptive cruise control algorithm,” Veh. Syst. Dyn., vol. 46, no. 8, pp. 661–690, Jun. 2008. doi: 10.1080/00423110701576130
|
[9] |
G. F. B. Piccinini, C. M. Rodrigues, M. Leitão, and A. Simões, “Reaction to a critical situation during driving with adaptive cruise control for users and non-users of the system,” Saf. Sci., vol. 72, pp. 116–126, Feb. 2015. doi: 10.1016/j.ssci.2014.09.008
|
[10] |
W. J. Schakel, C. M. Gorter, J. C. F. De Winter, and B. van Arem, “Driving characteristics and adaptive cruise control-a naturalistic driving study,” IEEE Intell. Trans. Syst. Mag., vol. 9, no. 2, pp. 17–24, Apr. 2017. doi: 10.1109/MITS.2017.2666582
|
[11] |
F. A. Mullakkal-Babu, M. Wang, B. Van Arem, and R. Happee, “Design and analysis of full range adaptive cruise control with integrated collision a voidance strategy,” in Proc. IEEE 19th Int. Conf. Intelligent Transportation Systems, Rio de Janeiro, Brazil, 2016, pp. 308−315.
|
[12] |
J. Q. Wang, L. Zhang, D. Z. Zhangm and K. Q. Li, “An adaptive longitudinal driving assistance system based on driver characteristics,” IEEE Trans. Intelligent Transportation Systems, vol. 14, no. 1, pp. 1–12, Jul. 2013. doi: 10.1109/TITS.2012.2205143
|
[13] |
H. M. Xiong and L. N. Boyle, “Drivers’ adaptation to adaptive cruise control: Examination of automatic and manual braking,” IEEE Trans. Intelligent Transportation Systems, vol. 13, no. 3, pp. 1468–1473, Apr. 2012. doi: 10.1109/TITS.2012.2192730
|
[14] |
S. Moon, I. Moon, and K. Yi, “Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance,” Control Eng. Pract., vol. 17, no. 4, pp. 442–455, Apr. 2009. doi: 10.1016/j.conengprac.2008.09.006
|
[15] |
L. Hu, Y. X. Zhong, W. Hao, B. Moghimi, J. Huang, X. Zhang, and R. H. Du., “Optimal route algorithm considering traffic light and energy consumption,” IEEE Access, vol. 6, pp. 59695–59704, Sept. 2018. doi: 10.1109/ACCESS.2018.2871843
|
[16] |
K. Gao, F. R. Han, P. P. Dong, N. X. Xiong, and R. H. Du, “Connected vehicle as a mobile sensor for real time queue length at signalized intersections,” Sensors, vol. 19, no. 9, pp. 2059, May 2019. doi: 10.3390/s19092059
|
[17] |
D. B. Zhao, Z. H. Hu, Z. P. Xia, C. Alippi, Y. H. Zhu, and D. Wang, “Full-range adaptive cruise control based on supervised adaptive dynamic programming,” Neurocomputing, vol. 125, pp. 57–67, Feb. 2014. doi: 10.1016/j.neucom.2012.09.034
|
[18] |
L. H. Luo, P. Li, and H. Wang, “Model predictive control for adaptive cruise control with multi-objectives: Comfort, fuel-economy, safety and car-following,” J. Zhejiang Univ. SCI. A, vol. 11, no. 3, pp. 191–201, Feb. 2010. doi: 10.1631/jzus.A0900374
|
[19] |
L. Hu, X. H. Wu, J. Huang, Y. Peng, and W. G. Liu, “Investigation of clusters and injuries in pedestrian crashes using GIS in Changsha, China,” Saf. Sci., vol. 127, pp. 104710, Jul. 2020. doi: 10.1016/j.ssci.2020.104710
|
[20] |
A. Weißmann, D. Görges, and X. H. Lin, “Energy-optimal adaptive cruise control combining model predictive control and dynamic programming,” Control Eng. Pract., vol. 72, pp. 125–137, Mar. 2018. doi: 10.1016/j.conengprac.2017.12.001
|
[21] |
G. J. L. Naus, R. P. A. Vugts, J. Ploeg, M. J. G. Van De Molengraft, and M. Steinbuch, “String-stable CACC design and experimental validation: a frequency-domain approach,” IEEE Trans. Veh. Technol., vol. 59, no. 9, pp. 4268–4279, Nov. 2010. doi: 10.1109/TVT.2010.2076320
|
[22] |
L. Hu, X. S. Hu, Y. H. Che, F. Feng, X. K. Lin, and Z. Y. Zhang, “Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering,” Appl. Energy, vol. 262, pp. 114569, Mar. 2020. doi: 10.1016/j.apenergy.2020.114569
|
[23] |
K. C. Dey, L. Yan, X. J. Wang, Y. Wang, H. Y. Shen, M. Chowdhury, L. Yu, C. X. Qiu, and V. Soundararaj, “A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (CACC),” IEEE Trans. Intelligent Transportation Systems, vol. 17, no. 2, pp. 491–509, Feb. 2016. doi: 10.1109/TITS.2015.2483063
|
[24] |
T. Hirose, Y. Ohtsuka, and M. Gokan, “Activation timing of a collision avoidance system with V2V communication,” SAE, SAE Tech. Paper 2017-01-0039, 2017.
|
[25] |
S. Y. Gelbal, S. Zhu, G. A. Anantharaman, B. A. Guvenc, and L. Guvenc, “Cooperative collision avoidance in a connected vehicle environment,” SAE, SAE Tech. Paper 2019-01-0488, 2019.
|
[26] |
I. Koglbauer, J. Holzinger, A. Eichberger, and C. Lex, “Drivers’ interaction with adaptive cruise control on dry and snowy roads with various tire-road grip potentials,” J. Adv. Transp., vol. 2017, pp. 5496837, Jan. 2017.
|
[27] |
M. G. Plessen, D. Bernardini, H. Esen, and A. Bemporad, “Spatial-based predictive control and geometric corridor planning for adaptive cruise control coupled with obstacle avoidance,” IEEE Trans. Control Syst. Technol., vol. 26, no. 1, pp. 38–50, Jan. 2018. doi: 10.1109/TCST.2017.2664722
|
[28] |
J. Huang, X. Luo, and X. Y. Peng, “A novel classification method for a driver’s cognitive stress level by transferring interbeat intervals of the ECG signal to pictures,” Sensors, vol. 20, no. 5, pp. 1340, 2020. doi: 10.3390/s20051340
|
[29] |
P. Nilsson, O. Hussien, A. Balkan, Y. X. Chen, A. D. Ames, J. W. Grizzle, N. Ozay, H. Peng, and P. Tabuada, “Correct-by-construction adaptive cruise control: Two approaches,” IEEE Trans. Control Syst. Technol., vol. 24, no. 4, pp. 1294–1307, Jul. 2016. doi: 10.1109/TCST.2015.2501351
|
[30] |
Y. T. Ba, W. Zhang, G. Salvendy, A. S. K. Cheng, and P. Ventsislavova, “Assessments of risky driving: A Go/No-Go simulator driving task to evaluate risky decision-making and associated behavioral patterns,” Appl. Ergon., vol. 52, pp. 265–274, Jan. 2016. doi: 10.1016/j.apergo.2015.07.020
|
[31] |
O. Taubman-Ben-Ari, M. Mikulincer, and O. Gillath, “The multidimensional driving style inventory—scale construct and validation,” Accid. Anal. Prev., vol. 36, no. 3, pp. 323–332, May 2004. doi: 10.1016/S0001-4575(03)00010-1
|
[32] |
O. Taubman-Ben-Ari and V. Skvirsky, “The multidimensional driving style inventory a decade later: Review of the literature and re-evaluation of the scale,” Accid. Anal. Prev., vol. 93, pp. 179–188, Aug. 2016. doi: 10.1016/j.aap.2016.04.038
|
[33] |
C. Lu, F. Q. Hu, D. P. Cao, J. W. Gong, Y. Xing, and Z. R. Li, “Virtual-to-real knowledge transfer for driving behavior recognition: Framework and a case study,” IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6391–6402, Jul. 2019. doi: 10.1109/TVT.2019.2917025
|
[34] |
Y. Xing, C. Lv, H. J. Wang, D. P. Cao, E. Velenis, and F. Y. Wang, “Driver activity recognition for intelligent vehicles: A deep learning approach,” IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5379–5390, Jun. 2019. doi: 10.1109/TVT.2019.2908425
|
[35] |
B. K. Sahu, T. K. Pati, J. R. Nayak, S. Panda, and S. K. Kar, “A novel hybrid LUS–TLBO optimized fuzzy-PID controller for load frequency control of multi-source power system,” Int. J. Electr. Power Energy Syst., vol. 74, pp. 58–69, Jan. 2016. doi: 10.1016/j.ijepes.2015.07.020
|
[36] |
X. K. Wang and L. Wang, “Design and research based on fuzzy PID-parameters self-tuning controller with MATLAB,” New Technol. New Process, vol. 11, pp. 26–28, 2016.
|
[37] |
S. Kantor and T. Stárek, “Design of algorithms for payment telematics systems evaluating driver’s driving style,” Trans. Transp. Sci., vol. 7, no. 1, pp. 9–16, Jan. 2014. doi: 10.2478/v10158-012-0049-5
|
[38] |
L. M. Niu, H. Y. Yang, and Y. H. Zhang, “Intelligent HEV fuzzy logic control strategy based on identification and prediction of drive cycle and driving trend,” World J. Eng. Technol., vol. 3, no. 3C, pp. 215–226, Oct. 2015.
|
[39] |
X. X. Xiong, L. Chen, and J. Liang, “New framework of vehicle collision prediction by combining SVM and HMM,” IEEE Trans. Intelligent Transportation Systems, vol. 19, no. 3, pp. 699–710, Mar. 2018. doi: 10.1109/TITS.2017.2699191
|
[40] |
Y. Peng, C. J. Fan, L. Hu, S. L. Peng, P. P. Xie, F. G. Wu, and S. E. Yi, “Tunnel driving occupational environment and hearing loss in train drivers in China,” Occup. Environ. Med., vol. 76, no. 2, pp. 97–104, Feb. 2019. doi: 10.1136/oemed-2018-105269
|