IEEE/CAA Journal of Automatica Sinica
Citation: | Chao Deng, Weinan Gao and Weiwei Che, "Distributed Adaptive Fault-Tolerant Output Regulation of Heterogeneous Multi-Agent Systems With Coupling Uncertainties and Actuator Faults," IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1098-1106, July 2020. doi: 10.1109/JAS.2020.1003258 |
[1] |
C. Deng, Y. Wang, C. Y. Wen, Y. Xu, and P. F. Lin, “Distributed resilient control for energy storage systems in cyber-physical microgrids,” IEEE Trans. Ind. Informat., Mar. 2020. doi: 10.1109/TII.2020.2981549
|
[2] |
X. G. Guo, J. L. Wang, F. Liao, and R. S. H. Teo, “CNN-based distributed adaptive control for vehicle-following platoon with input saturation,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 10, pp. 3121–3132, Oct. 2018. doi: 10.1109/TITS.2017.2772306
|
[3] |
D. F. Wu, G. P. Zeng, L. G. Meng, W. J. Zhou, and L. M. Li, “Gini coefficient-based task allocation for multi-robot systems with limited energy resources,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 155–168, Jan. 2018. doi: 10.1109/JAS.2017.7510385
|
[4] |
N. Xiao, W. H. Wang, L. H. Xie, T. Wongpiromsarn, E. Frazzoli, and D. Rus, “Road pricing design based on game theory and multiagent consensus,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 31–39, Jan. 2014. doi: 10.1109/JAS.2014.7004617
|
[5] |
Y. Xu, H. Y. Lu, and Z. M. Xie, “Research on multi-robot cooperative location algorithm based on wireless sensor networks,” Int. J. Innov. Comput. Inf. Control, vol. 15, no. 5, pp. 1779–1792, 2019.
|
[6] |
G. Wen and W. X. Zheng, “On constructing multiple Lyapunov functions for tracking control of multiple agents with switching topologies,” IEEE Trans. Autom. Control, vol. 64, no. 9, pp. 3796–3803, 2019. doi: 10.1109/TAC.2018.2885079
|
[7] |
X. L. Wang, Y. G. Hong, J. Huang, and Z. P. Jiang, “A distributed control approach to a robust output regulation problem for multi-agent linear systems,” IEEE Trans. Autom. Control, vol. 55, no. 12, pp. 2891–2895, Dec. 2010. doi: 10.1109/TAC.2010.2076250
|
[8] |
Y. F. Su, Y. G. Hong, and J. Huang, “A general result on the robust cooperative output regulation for linear uncertain multi-agent systems,” IEEE Trans. Autom. Control, vol. 58, no. 5, pp. 1275–1279, May 2013. doi: 10.1109/TAC.2012.2229837
|
[9] |
H. Cai, F. L. Lewis, G. Q. Hu and J. Huang, “The adaptive distributed observer approach to the cooperative output regulation of linear multiagent systems,” Automatica, vol. 75, pp. 299–305, Jan. 2017. doi: 10.1016/j.automatica.2016.09.038
|
[10] |
W. N. Gao, Z-P. Jiang, F. L. Lewis, and Y. B. Wang, “Leader-to-formation stability of multi-agent systems: An adaptive optimal control approach,” IEEE Trans. Autom. Control, vol. 63, no. 10, pp. 3581–3587, Oct. 2018. doi: 10.1109/TAC.2018.2799526
|
[11] |
Y. W. Wang, Y. Lei, T. Bian, and Z. H. Guan, “Distributed control of nonlinear multi-agent systems with unknown and nonidentical control directions via event-triggered communication,” IEEE Trans. Cybern., 2019. doi: 10.1109/TCYB.2019.2908874
|
[12] |
B. H. Wang, W. S. Chen, B. Zhang, and Y. Zhao, “Regulation cooperative control for heterogeneous uncertain chaotic systems with time delay: A synchronization errors estimation framework,” Automatica, vol. 108, pp. 108486, May 2019. doi: 10.1016/j.automatica.2019.06.038
|
[13] |
Y. W. Wang, X. K. Liu, J. W. Xiao, and Y. J. Shen, “Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control,” Automatica, vol. 93, pp. 26–32, Jul. 2018. doi: 10.1016/j.automatica.2018.03.020
|
[14] |
Y. Y. Guo, B. Jiang, and Y. M. Zhang, “A novel robust attitude control for quadrotor aircraft subject to actuator faults and wind gusts,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 292–300, Jan. 2018. doi: 10.1109/JAS.2017.7510679
|
[15] |
C. L. Wang, L. Guo, C. Y. Wen, Q. L. Hu, and J. Z. Qiao, “Eventtriggered adaptive attitude tracking control for spacecraft with unknown actuator faults,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2241–2250, 2020. doi: 10.1109/TIE.2019.2905837
|
[16] |
Y. Gu and X. J. Li, “Fault detection for sector-bounded non-linear systems with servo inputs and sensor stuck faults,” J. Control Decis., vol. 6, no. 3, pp. 147–165, Jun. 2018.
|
[17] |
K. Zhang, B. Jiang, and P. Shi, “Adjustable parameter-based distributed fault estimation observer design for multiagent systems with directed graphs,” IEEE Trans. Cybern., vol. 47, no. 2, pp. 306–314, Feb. 2017.
|
[18] |
Y. M. Wu and Z. S. Wang, “Fuzzy adaptive practical fixed-time consensus for second-order nonlinear multiagent systems under actuator faults”, IEEE Trans. Cybern., 2019. doi: 10.1109/TCYB.2019.2963681.
|
[19] |
Y. Yang and D. Yue, “Distributed adaptive fault-tolerant control of pure-feedback nonlinear multi-agent systems with actuator failures,” Neurocomputing, vol. 221, pp. 72–84, Jan. 2017. doi: 10.1016/j.neucom.2016.09.061
|
[20] |
Q. K. Shen, B. Jiang, P. Shi, and J. Zhao, “Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multiagent systems with time-varying actuator faults,” IEEE Trans. Fuzzy Syst., vol. 22, no. 3, pp. 494–504, Jun. 2014. doi: 10.1109/TFUZZ.2013.2260757
|
[21] |
D. Ye, M. M. Chen, and H. J. Yang, “Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 757–767, Mar. 2019. doi: 10.1109/TCYB.2017.2782731
|
[22] |
X. Z. Jin, S. Wang, J. H. Qin, W. X. Zheng, and Y. Kang, “Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation,” IEEE Trans. Circuits Syst. I,Reg. Papers, vol. 65, no. 7, pp. 2243–2255, 2018. doi: 10.1109/TCSI.2017.2782729
|
[23] |
C. Deng and G. H. Yang, “Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems,” Automatica, vol. 103, pp. 62–68, May 2019. doi: 10.1016/j.automatica.2019.01.013
|
[24] |
C. Deng and C. Wen, “Distributed resilient observer-based fault tolerant control for heterogeneous multi-agent systems under actuator faults and DoS attacks,” IEEE Trans. Control Netw. Syst., 2020. doi: 10.1109/TCNS.2020.2972601
|
[25] |
W. N. Gao, Y. Jiang, and M. Davari, “Data-driven cooperative output regulation of multi-agent systems via robust adaptive dynamic programming,” IEEE Trans. Circuits Syst. II,Exp. Briefs, vol. 66, no. 3, pp. 447–451, 2019. doi: 10.1109/TCSII.2018.2849639
|
[26] |
Z. K. Li, M. Z. Q. Chen, and Z. T. Ding, “Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over directed graphs,” Automatica, vol. 68, pp. 179–183, Jun. 2016. doi: 10.1016/j.automatica.2016.01.076
|
[27] |
X. Wang and G. H. Yang, “Fault-tolerant consensus tracking control for linear multi-agent systems under switching directed network,” IEEE Trans. Cybern., 2019, doi: 10.1109/TCYB.2019.2901542.
|
[28] |
S. P. Bhat and D. S. Bernstein, “Geometric homogeneity with applications to finite-time stability,” Math. Control Signals Syst.(MCSS)
|
[29] |
C. Deng, W. W. Che, and P. Shi, “Cooperative fault-tolerant output regulation for multi-agent systems by distributed learning control approach,” IEEE Trans. Neural Netw. Learn. Syst., doi: 10.1109/TNNLS.2019.2958151, 2019.
|
[30] |
C. Q. Liu, Y. Q. Wang, D. H. Zhou, and X. Shen, “Minimum-variance unbiased unknown input and state estimation for multi-agent systems by distributed cooperative filters,” IEEE Access, vol. 6, pp. 18128–18141, 2018. doi: 10.1109/ACCESS.2018.2815662
|
[31] |
J. J. E. Slotine and W. P. Li, Applied Nonlinear Control, Prentice hall Englewood Cliffs, NJ., 1991.
|
[32] |
G. Wheeler, C.-Y. Su, and Y. Stepanenko, “A sliding mode controller with improved adaptation laws for the upper bounds on the norm of uncertainties,” in Proc. Amer. Control Conf., 1997, pp. 2133–2137.
|
[33] |
Z. Zhu, Y. Q. Xia, and M. Y. Fu, “Adaptive sliding mode control for attitude stabilization with actuator saturation,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4898–4907, Oct. 2011.
|
[34] |
S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, 2000. doi: 10.1137/S0363012997321358
|