IEEE/CAA Journal of Automatica Sinica
Citation: | Yaojie Zhang, Bing Xu and Tiejun Zhao, "Convolutional Multi-Head Self-Attention on Memory for Aspect Sentiment Classification," IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1038-1044, July 2020. doi: 10.1109/JAS.2020.1003243 |
[1] |
Liu B and Zhang L, A Survey of Opinion Mining and Sentiment Analysis. Boston, MA: Springer US, 2012, pp. 415–463.
|
[2] |
Pang B and Lee L, “Opinion mining and sentiment analysis,” Foundations and Trends. in Information Retrieval, vol. 2, no. 1–2, pp. 1–135, 2008.
|
[3] |
M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and S. Manandhar, “Semeval-2014 task 4: Aspect based sentiment analysis,” in Proc. 8th Int. Workshop on Semantic Evaluation, SemEval@COLING, Dublin, Ireland, Aug. 2014, pp. 27–35.
|
[4] |
M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, and I. Androutsopoulos, “Semeval-2015 task 12: Aspect based sentiment analysis,” in Proc. 9th Int. Workshop on Semantic Evaluation, SemEval@NAACL-HLT, Denver, Colorado, USA, Jun. 2015, pp. 486–495.
|
[5] |
M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, M. Al-Smadi, M. Al-Ayyoub, Y. Y. Zhao, B. Qin, O. D. Clercq, V. Hoste, M. Apidianaki, X. Tannier, N. V. Loukachevitch, E. V. Kotelnikov, N. Bel, S. M. J. Zafra, and G. C. Eryigit, “Semeval-2016 task 5: Aspect based sentiment analysis,” in Proc. 10th Int. Workshop on Semantic Evaluation, SemEval@NAACLHLT, San Diego, CA, USA, Jun. 2016, pp. 19–30.
|
[6] |
L. Shu, H. Xu, and B. Liu, “Lifelong learning CRF for supervised aspect extraction,” in Proc. 55th Annual Meeting of the Association for Computational Linguistics, ACL, Vancouver, Canada: vol. 2, 2017, pp. 148–154.
|
[7] |
Y. Q. Wang, M. Huang, X. Y. Zhu, and L. Zhao, “Attention-based LSTM for aspect-level sentiment classification,” in Proc. Conf. Empirical Methods in Natural Language Processing, EMNLP, Austin, Texas, USA, Nov. 2016, pp. 606–615.
|
[8] |
H. H. Do, P. W. C. Prasad, A. Maag, and A. Alsadoon, “Deep learning for aspect-based sentiment analysis: A comparative review,” Expert Syst. Appl., vol. 118, pp. 272–299, 2019. doi: 10.1016/j.eswa.2018.10.003
|
[9] |
W. Xue and T. Li, “Aspect based sentiment analysis with gated convolutional networks,” in Proc. 56th Annual Meeting of the Association for Computational Linguistics, ACL, Melbourne, Australia: Association for Computational Linguistics, Jul. 2018, pp. 2514–2523.
|
[10] |
X. W. Ding, B. Liu, and P. S. Yu, “A holistic lexicon-based approach to opinion mining,” in Proc. Int. Conf. Web Search and Web Data Mining, WSDM, Palo Alto, California, USA, Feb. 2008, pp. 231–240.
|
[11] |
W. X. Zhao, J. Jiang, H. F. Yan, and X. M. Li, “Jointly modeling aspects and opinions with a maxent-lda hybrid,” in Proc. Conf. Empirical Methods in Natural Language Processing, EMNLP, MIT Stata Center, Massachusetts, USA, 2010, pp. 56–65.
|
[12] |
S. Kiritchenko, X. D. Zhu, C. Cherry, and S. Mohammad, “NRC-Canada-2014: Detecting aspects and sentiment in customer reviews,” in Proc. 8th Int. Workshop on Semantic Evaluation, SemEval@COLING, Dublin, Ireland, Aug. 2014, pp. 437–442.
|
[13] |
D. Y. Tang, B. Qin, X. C. Feng, and T. Liu, “Target-dependent sentiment classification with long short term memory,” CoRR, vol. abs/1512.01100, 2015.
|
[14] |
D. Y. Tang, B. Qin, and T. Liu, “Aspect level sentiment classification with deep memory network,” in Proc. Conf. Empirical Methods in Natural Language Processing, EMNLP, Austin, Texas, USA, Nov. 2016, pp. 214–224.
|
[15] |
P. Chen, Z. Q. Sun, L. D. Bing, and W. Yang, “Recurrent attention network on memory for aspect sentiment analysis,” in Proc. Conf. Empirical Methods in Natural Language Processing, EMNLP, Copenhagen, Denmark, Sep. 2017, pp. 452–461.
|
[16] |
B. T. Do, “Aspect-based sentiment analysis using bitmask bidirectional long short term memory networks,” in Proc. 31st Int. Florida Artificial Intelligence Research Society Conf., FLAIRS, Melbourne, Florida, USA. May 2018, pp. 259–264.
|
[17] |
N. Majumder, S. Poria, A. F. Gelbukh, M. S. Akhtar, E. Cambria, and A. Ekbal, “IARM: inter-aspect relation modeling with memory networks in aspect-based sentiment analysis,” in Proc. Conf. Empirical Methods in Natural Language Processing, Brussels, Belgium, Oct. – Nov. 2018, pp. 3402–3411.
|
[18] |
P. S. Zhu and T. Y. Qian, “Enhanced aspect level sentiment classification with auxiliary memory,” in Proc. 27th Int. Conf. Computational Linguistics, COLING, Santa Fe, New Mexico, USA, Aug. 2018, pp. 1077–1087.
|
[19] |
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Advances in Neural Information Processing Systems 30: Annual Conf. Neural Information Processing Systems, Long Beach, CA, USA, 2017, pp. 6000–6010.
|
[20] |
S. Gao, A. Ramanathan, and G. D. Tourassi, “Hierarchical convolutional attention networks for text classification,” in Proc. 3rd Workshop on Representation Learning for NLP, Rep4NLP@ACL, Melbourne, Australia, Jul. 2018, pp. 11–23.
|
[21] |
S. Mohammad, S. Kiritchenko, P. Sobhani, X. D. Zhu, and C. Cherry, “Semeval-2016 task 6: Detecting stance in tweets,” in Proc. 10th Int. Workshop on Semantic Evaluation, SemEval@NAACL-HLT, San Diego, CA, USA, Jun. 2016, pp. 31–41.
|
[22] |
J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Proc. Conf. Empirical Methods in Natural Language Processing, EMNLP, Doha, Qatar, 2014, pp. 1532–1543.
|
[23] |
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735
|
[24] |
D. H. Ma, S. J. Li, X. D. Zhang, and H. F. Wang, “Interactive attention networks for aspect-level sentiment classification,” in Proc. 26th Int. Joint Conf. Artificial Intelligence, IJCAI, Melbourne, Australia, Aug. 2017, pp. 4068–4074.
|
[25] |
X. Y. Wang, G. L. Xu, J. Y. Zhang, X. W. Sun, L. Wang, and T. L. Huang, “Syntaxdirected hybrid attention network for aspect-level sentiment analysis,” IEEE Access, vol. 7, pp. 5014–5025, 2019. doi: 10.1109/ACCESS.2018.2885032
|