A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 4
Jun.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Pierluigi Di Franco, Giordano Scarciotti and Alessandro Astolfi, "Stability of Nonlinear Differential-Algebraic Systems Via Additive Identity," IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 929-941, July 2020. doi: 10.1109/JAS.2020.1003219
Citation: Pierluigi Di Franco, Giordano Scarciotti and Alessandro Astolfi, "Stability of Nonlinear Differential-Algebraic Systems Via Additive Identity," IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 929-941, July 2020. doi: 10.1109/JAS.2020.1003219

Stability of Nonlinear Differential-Algebraic Systems Via Additive Identity

doi: 10.1109/JAS.2020.1003219
More Information
  • The stability analysis for nonlinear differential-algebraic systems is addressed using tools from classical control theory. Sufficient stability conditions relying on matrix inequalities are established via Lyapunov Direct Method. In addition, a novel interpretation of differential-algebraic systems as feedback interconnection of a purely differential system and an algebraic system allows reducing the stability analysis to a small-gain-like condition. The study of stability properties for constrained mechanical systems, for a class of Lipschitz differential-algebraic systems and for an academic example is used to illustrate the theory.

     

  • loading
  • 1Loosely speaking, the index indicates the number of time-differentiations required to reduce a DAE system to a system of ordinary differential equations, see [11] for a precise definition.
    2See [24] for detail on the transformation of fully-implicit DAE systems to the semi-explicit form and vice versa.
    3The dependence of $ h $ on the algebraic variable $ w $ is explicit only when the index is one. However, with some abuse of notation, we use $ h(x, w) $ for any index.
    4Throughout the paper all mappings are assumed to be smooth.
    5We consider the notion of “classical” solution as formulated in [27].
    6See Hadamard’s Lemma [33].
    7The matrices $ A_{i j} $ , for $ i = 1, 2 $ and $ j = 1, 2 $ , are not uniquely defined.
    8Again, see Hadamard’s Lemma [33].
    9See [31] for the concept of generalized $ {\cal{L}}_2 $ -gain.
    10In [37] $ a $ is constant.
  • [1]
    W. Blajer, “Index of differential-algebraic equations governing the dynamics of constrained mechanical systems,” Appl. Math. Model., vol. 16, no. 2, pp. 70–77, Feb. 1992. doi: 10.1016/0307-904X(92)90083-F
    [2]
    O. Khatib, “A unified approach for motion and force control of robot manipulators: The operational space formulation,” IEEE J. Rob. Autom., vol. 3, no. 1, pp. 43–53, Feb. 1987. doi: 10.1109/JRA.1987.1087068
    [3]
    A. Kumar and P. Daoutidis, “Control of nonlinear differential algebraic equation systems: An overview,” in Nonlinear Model Based Process Control, R. Berber and C. Kravaris, Eds. Dordrecht, Netherlands: Springer, 1998, pp. 311–344.
    [4]
    R. Riaza, Differential-Algebraic Systems: Analytical Aspects and Circuit Applications. London, UK: World Scientific, 2008.
    [5]
    T. Fliegner, H. Nijmeijer, and Ü. Kotta, “Some aspects of nonlinear discrete-time descriptor systems in economics,” in Predictability and Nonlinear Modelling in Natural Sciences and Economics, J. Grasman and G. van Straten, Eds. Dordrecht, Netherlands: Springer, 1994, pp. 581–590.
    [6]
    P. Fritzson, Principles of Object-Oriented Modeling and Simulation With Modelica 2.1. Piscataway, USA: IEEE Press, 2004.
    [7]
    M. Arnold, “DAE aspects of multibody system dynamics,” in Surveys in Differential-Algebraic Equations IV, A. Ilchmann and T. Reis, Eds, Cham, Germany: Springer, 2017.
    [8]
    P. Di Franco, G. Scarciotti, and A. Astolfi, “A globally stable algorithm for the integration of high-index differential-algebraic systems,” IEEE Trans. Autom. Control, vol. 65, no. 5, pp. 2107–2122, May 2020. doi: 10.1109/TAC.2019.2939638
    [9]
    T. Berger, “On observers for nonlinear differential-algebraic systems,” IEEE Trans. Autom. Control, vol. 64, no. 5, pp. 2150–2157, May 2019. doi: 10.1109/TAC.2018.2866438
    [10]
    J. C. Arceo, M. Sánchez, V. Estrada-Manzo, and M. Bernal, “Convex stability analysis of nonlinear singular systems via linear matrix inequalities,” IEEE Trans. Autom. Control, vol. 64, no. 4, pp. 1740–1745, Apr. 2019. doi: 10.1109/TAC.2018.2854651
    [11]
    V. Mehrmann, Index Concepts for Differential-Algebraic Equations. Berlin Heidelberg, Germany: Springer, 2015, pp. 676–681.
    [12]
    L. Y. Dai, Singular Control Systems. Berlin, Heidelberg, Germany: Springer-Verlag, 1989.
    [13]
    N. H. McClamroch, “Feedback stabilization of control systems described by a class of nonlinear differential-algebraic equations,” Syst. Control Lett., vol. 15, no. 1, pp. 53–60, Jul. 1990. doi: 10.1016/0167-6911(90)90044-U
    [14]
    A. Kumar and P. Daoutidis, “Feedback control of nonlinear differential-algebraic-equation systems,” AIChE J., vol. 41, no. 3, pp. 619–636, Mar. 1995. doi: 10.1002/aic.690410319
    [15]
    T. N. Chang and E. J. Davison, “Decentralized control of descriptor systems,” IEEE Trans. Autom. Control, vol. 46, no. 10, pp. 1589–1595, Oct. 2001. doi: 10.1109/9.956054
    [16]
    J. Åslund and E. Frisk, “An observer for non-linear differential-algebraic systems,” Automatica, vol. 42, no. 6, pp. 959–965, Jun. 2006. doi: 10.1016/j.automatica.2006.01.026
    [17]
    H. S. Wu and K. Mizukami, “Lyapunov stability theory and robust control of uncertain descriptor systems,” Int. J. Syst. Sci., vol. 26, no. 10, pp. 1981–1991, Oct. 1995. doi: 10.1080/00207729508929149
    [18]
    P. G. Wang and J. Zhang, “Stability of solutions for nonlinear singular systems with delay,” Appl. Math. Lett., vol. 25, no. 10, pp. 1291–1295, Oct. 2012. doi: 10.1016/j.aml.2011.11.029
    [19]
    D. F. Coutinho, A. S. Bazanella, A. Trofino, and A. S. Silva, “Stability analysis and control of a class of differential-algebraic nonlinear systems,” Int. J. Robust Nonlinear Control, vol. 14, no. 16, pp. 1301–1326, Nov. 2004. doi: 10.1002/rnc.950
    [20]
    K. Takaba, N. Morihira, and T. Katayama, “H control for descriptor systems: A J-spectral factorization approach,” in Proc. 33rd IEEE Conf. Decision and Control, Lake Buena Vista, USA, 1994, pp. 2251–2256.
    [21]
    I. Masubuchi, Y. Kamitane, A. Ohara, and N. Suda, “H control for descriptor systems: A matrix inequalities approach,” Automatica, vol. 33, no. 4, pp. 669–673, Apr. 1997. doi: 10.1016/S0005-1098(96)00193-8
    [22]
    H. S. Wang, C. F. Yung, and F. R. Chang, “H control for nonlinear descriptor systems,” IEEE Trans. Automatic Control, vol. 47, no. 11, pp. 1919–1925, Nov. 2002.
    [23]
    L. Y. Sun and Y. Z. Wang, “An undecomposed approach to control design for a class of nonlinear descriptor systems,” Int. J. Robust Nonlinear Control, vol. 23, no. 6, pp. 695–708, Apr. 2013. doi: 10.1002/rnc.2790
    [24]
    C. W. Gear, “Differential-algebraic equation index transformations,” SIAM J. Sci. Stat. Comput., vol. 9, no. 1, pp. 39–47, Jan. 1988. doi: 10.1137/0909004
    [25]
    P. Di Franco, G. Scarciotti, and A. Astolfi, “A note on the stability of nonlinear differential-algebraic systems,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 7421–7426, Jul. 2017. doi: 10.1016/j.ifacol.2017.08.1501
    [26]
    P. Di Franco, G. Scarciotti, and A. Astolfi, “A disturbance attenuation approach for the control of differential-algebraic systems,” in Proc. IEEE Conf. Decision and Control, Miami Beach, FL, USA, 2018, pp. 4695–4700.
    [27]
    P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution. Zurich, Switzerland: European Mathematical Society, 2006.
    [28]
    D. C. Tarraf and H. H. Asada, “On the nature and stability of differential-algebraic systems,” in Proc. American Control Conf., Anchorage, USA, 2002, pp. 3546–3551.
    [29]
    P. Di Franco, G. Scarciotti, and A. Astolfi, “On the stability of constrained mechanical systems,” in Proc. IEEE 56th Annu. Conf. Decision and Control, Melbourne, Australia, 2017, pp. 3170–3174.
    [30]
    P. Di Franco, G. Scarciotti, and A. Astolfi, “Stabilization of differential-algebraic systems with Lipschitz nonlinearities via feedback decomposition,” in Proc. 18th European Control Conf., Naples, Italy, 2019.
    [31]
    A. Rapaport and A. Astolfi, “Practical L2 disturbance attenuation for nonlinear systems,” Automatica, vol. 38, no. 1, pp. 139–145, Jan. 2002. doi: 10.1016/S0005-1098(01)00176-5
    [32]
    J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space solutions to standard H2 and Hcontrol problems,” IEEE Trans. Autom. Control, vol. 34, no. 8, pp. 831–847, Aug. 1989. doi: 10.1109/9.29425
    [33]
    J. Nestruev, Smooth Manifolds and Observables. New York, USA: Springer, 2003.
    [34]
    M. D. S. Aliyu and E. K. Boukas, “H filtering for nonlinear singular systems,” IEEE Trans. Circuits Syst. I:Regular Pap., vol. 59, no. 10, pp. 2395–2404, Oct. 2012. doi: 10.1109/TCSI.2012.2189038
    [35]
    J. Sjöoberg, K. Fujimoto, and T. Glad, “Model reduction of nonlinear differential-algebraic equations,” IFAC Proc., vol. 40, no. 12, pp. 176–181, 2007. doi: 10.3182/20070822-3-ZA-2920.00030
    [36]
    A. Rapaport and A. Astolfi, “A remark on the stability of interconnected nonlinear systems,” IEEE Trans. Autom. Control, vol. 49, no. 1, pp. 120–124, Jan. 2004. doi: 10.1109/TAC.2003.821407
    [37]
    A. Isidori, Nonlinear Control Systems II, E. D. Sontag and M. Thoma, Eds. London, UK: Springer, 1995.
    [38]
    J. LaSalle, “Some extensions of Liapunov’s second method,” IRE Trans. Circuit Theory, vol. 7, no. 4, pp. 520–527, Dec. 1960. doi: 10.1109/TCT.1960.1086720
    [39]
    C. W. Gear, B. Leimkuhler, and G. K. Gupta, “Automatic integration of Euler-Lagrange equations with constraints,” J. Comput. Appl. Math., vol. 12-13, pp. 77–90, May 1985. doi: 10.1016/0377-0427(85)90008-1
    [40]
    C. Führer and B. J. Leimkuhler, “Numerical solution of differential-algebraic equations for constrained mechanical motion,” Numerische Mathematik, vol. 59, no. 1, pp. 55–69, Dec. 1991. doi: 10.1007/BF01385770
    [41]
    D. Koenig, “Observer design for unknown input nonlinear descriptor systems via convex optimization,” IEEE Trans. Autom. Control, vol. 51, no. 6, pp. 1047–1052, Jun. 2006. doi: 10.1109/TAC.2006.876807
    [42]
    L. N. Zhou, C. Y. Yang, and Q. L. Zhang, “Observers for descriptor systems with slope-restricted nonlinearities,” Int. J. Autom. Comput., vol. 7, no. 4, pp. 472–478, Nov. 2010. doi: 10.1007/s11633-010-0529-1
    [43]
    M. K. Gupta, N. K. Tomar, and S. Bhaumik, “Observer design for descriptor systems with Lipschitz nonlinearities: An LMI approach,” Nonlinear Dyn. Syst. Theory, vol. 14, no. 3, pp. 291–301, Jan. 2014.
    [44]
    M. Abbaszadeh and H. J. Marquez, “A generalized framework for robust nonlinear H filtering of Lipschitz descriptor systems with parametric and nonlinear uncertainties,” Automatica, vol. 48, no. 5, pp. 894–900, May 2012. doi: 10.1016/j.automatica.2012.02.033
    [45]
    W. W. Hager, “Updating the inverse of a matrix,” SIAM Rev., vol. 31, no. 2, pp. 221–239, 1989. doi: 10.1137/1031049
    [46]
    H. K. Khalil, Nonlinear Systems. Upper Saddle River, USA: Prentice Hall, 1996.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (1589) PDF downloads(158) Cited by()

    Highlights

    • Representation of DAE systems as feedback interconnection.
    • Stability analysis forDAE systems via Lyapunov Method and Small Gain-like arguments.
    • Stability analysis for nonlinear mechanical systems with holonomic constraints.
    • Stability analysis of Lipschitz DAE systems.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return