IEEE/CAA Journal of Automatica Sinica
Citation: | Lei Liu, Tingting Gao, Yan-Jun Liu and Shaocheng Tong, "Time-Varying Asymmetrical BLFs Based Adaptive Finite-Time Neural Control of Nonlinear Systems With Full State Constraints," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1335-1343, Sept. 2020. doi: 10.1109/JAS.2020.1003213 |
[1] |
M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, New York: Wiley, 1995.
|
[2] |
P. V. Kokotovic, “The joy of feedback: Nonlinear and adaptive,” IEEE Control Systems Magazine, vol. 12, no. 3, pp. 7–17, Jun. 1992. doi: 10.1109/37.165507
|
[3] |
M. S. D. Queiroz, D. M. Dawson, M. Agarwal, and F. J. Zhang, “Adaptive nonlinear boundary control of a flexible link robot arm,” IEEE Trans. Robotics and Autom., vol. 15, no. 4, pp. 779–787, Aug. 1999. doi: 10.1109/70.782034
|
[4] |
S. Scarritt, “Nonlinear model reference adaptive control for satellite attitude tracking,” in Proc. AIAA Guidance, Navigation & Control Conf. & Exhibit, 2013.
|
[5] |
D. E. Seo, "Noncertainty equivalent nonlinear adaptive control and its applications to mechanical and aerospace systems," Ph.D. dissertation, University of Texas at Austin, USA, pp. 34–57, 2007.
|
[6] |
L. Liu, Y. J. Liu, and C. L. P. Chen, “Adaptive neural network control for a DC motor system with dead-zone,” Nonlinear Dynamics, vol. 72, no. 1–2, pp. 141–147, Apr. 2013. doi: 10.1007/s11071-012-0698-2
|
[7] |
M. Chen and S. S. Ge, “Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer,” IEEE Trans. Cybernetics, vol. 43, no. 4, pp. 1213–1225, Aug. 2013. doi: 10.1109/TSMCB.2012.2226577
|
[8] |
F. Wang, Z. Y. Liu, Y. Zhang, and C. L. P. Chen, “Adaptive fuzzy control for a class of stochastic pure-feedback nonlinear systems with unknown hysteresis,” IEEE Trans. Fuzzy Systems, vol. 24, no. 1, pp. 140–152, Feb. 2016. doi: 10.1109/TFUZZ.2015.2446531
|
[9] |
S. C. Tong, T. Wang, Y. M. Li, and B. Chen, “A combined backstepping and stochastic small-gain approach to robust adaptive fuzzy output feedback control,” IEEE Trans. Fuzzy Systems, vol. 21, no. 2, pp. 314–327, Apr. 2013. doi: 10.1109/TFUZZ.2012.2213260
|
[10] |
K. Zhao and Y. D. Song, “Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems,” IEEE Trans. Autom. Control, vol. 64, no. 3, pp. 1265–1272, Mar. 2019. doi: 10.1109/TAC.2018.2845707
|
[11] |
Y. J. Liu and S. C. Tong, “Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints,” Automatica, vol. 64, pp. 70–75, 2016. doi: 10.1016/j.automatica.2015.10.034
|
[12] |
H. Q. Wang, P. X. Liu, X. D. Zhao, and X. P. Liu, “Adaptive fuzzy finite-time control of nonlinear systems with actuator faults,” IEEE Trans. Cybernetics, vol. 50, no. 5, pp. 1786–1797, 2020. doi: 10.1109/TCYB.2019.2902868
|
[13] |
H. Q. Wang, X. P. Liu, and K. F. Liu, “Robust adaptive neural tracking control for a class of stochastic nonlinear interconnected systems,” IEEE Trans. Neural Networks and Learning Systems, vol. 27, no. 3, pp. 510–523, 2016. doi: 10.1109/TNNLS.2015.2412035
|
[14] |
H. Q. Wang, X. P. Liu, K. F. Liu, and H. R. Karimi, “Approximation based adaptive fuzzy tracking control for a class of nonstrict-feedback stochastic nonlinear time-delay systems,” IEEE Trans. Fuzzy Systems, vol. 23, no. 5, pp. 1746–1760, 2015. doi: 10.1109/TFUZZ.2014.2375917
|
[15] |
Y. D. Song, Z. Y. Shen, L. He, and X. C. Huang, “Neuroadaptive control of strict feedback systems with full-state constraints and unknown actuation characteristics: an inexpensive solution,” IEEE Trans. Cybernetics, vol. 48, no. 11, pp. 3126–3134, Nov. 2018. doi: 10.1109/TCYB.2017.2759498
|
[16] |
K. Zhao, Y. D. Song, T. D. Ma, and L. He, “Prescribed performance control of uncertain Euler-Lagrange systems subject to full-state constraints,” IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 8, pp. 3478–3489, Aug. 2018. doi: 10.1109/TNNLS.2017.2727223
|
[17] |
D. P. Li, D. J. Li, Y. J. Liu, S. C. Tong, and C. L. Philip Chen, “Approximation-based adaptive neural tracking control of nonlinear MIMO unknown time-varying delay systems with full state constraints,” IEEE Trans. Cybernetics, vol. 47, no. 10, pp. 3100–3109, Oct. 2017. doi: 10.1109/TCYB.2017.2707178
|
[18] |
L. Liu, Y. J. Liu, and S. C. Tong, “Fuzzy based multierror constraint control for switched nonlinear systems and its applications,” IEEE Trans. Fuzzy Systems, vol. 27, no. 8, pp. 1519–1531, 2019. doi: 10.1109/TFUZZ.2018.2882173
|
[19] |
Y. J. Liu, Q. Zeng, S. C. Tong, C. L. Philip Chen, and L. Liu, “Actuator failure compensation-based adaptive control of active suspension systems with prescribed performance,” IEEE Trans. Industrial Electronics, 2019. doi: 10.1109/TIE.2019.2937037
|
[20] |
L. Liu, Y. J. Liu, A. Q. Chen, S. C. Tong, and C. L. P. Chen, “Integral barrier Lyapunov function based adaptive control for switched nonlinear systems,” SCIENCE CHINA Information Sciences, vol. 63, no. 3, pp. 132203:1–132203:14, Mar. 2020.
|
[21] |
L. Tang and D. J. Li, “Time-varying barrier Lyapunov function based adaptive neural controller design for nonlinear pure-feedback systems with unknown hysteresis,” Int. J. Control,Autom.,and Systems, vol. 17, no. 7, pp. 1642–1654, Jul. 2019. doi: 10.1007/s12555-018-0745-y
|
[22] |
L. Liu, Y. J. Liu, D. P. Li, S. C. Tong, and Z. S. Wang, “Barrier Lyapunov function based adaptive fuzzy FTC for switched systems and its applications to resistance inductance capacitance circuit system,” IEEE Trans. Cybernetics, 2019.
|
[23] |
J. P. Yu, L. Zhao, H. S. Yu, and C. Lin, “Barrier Lyapunov functions-based command filtered output feedback control for full-state constrained nonlinear systems,” Automatica, vol. 105, pp. 71–79, 2019. doi: 10.1016/j.automatica.2019.03.022
|
[24] |
K. Zhao, Y. D. Song, and Z. R. Zhang, “Tracking control of MIMO nonlinear systems under full state constraints: A single-parameter adaptation approach free from feasibility conditions,” Automatica, vol. 55, no. 9, pp. 52–60, 2019.
|
[25] |
S. M. Lu, D. P. Li, and Y. J. Liu, “Adaptive neural network control for uncertain time-varying state constrained robotics systems,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 49, no. 12, pp. 2511–2518, Dec. 2019. doi: 10.1109/TSMC.2017.2755377
|
[26] |
L. H. Kong, W. He, C. G. Yang, G. Li, and Z. Q. Zhang, “Adaptive fuzzy control for a marine vessel with time-varying constraints,” IET Control Theory &Applications, vol. 12, no. 10, pp. 1448–1455, Mar. 2018.
|
[27] |
K. P. Tee, B. B. Ren, and S. S. Ge, “Control of nonlinear systems with time-varying output constraints,” Automatica, vol. 47, no. 11, pp. 2511–2516, Nov. 2011. doi: 10.1016/j.automatica.2011.08.044
|
[28] |
W. C. Meng, Q. M. Yang, and Y. X. Sun, “Adaptive neural control of nonlinear MIMO systems with time-varying output constraints,” IEEE Trans. Neural Networks and Learning Systems, vol. 26, no. 5, pp. 1074–1085, May 2015. doi: 10.1109/TNNLS.2014.2333878
|
[29] |
Y. J. Liu, S. M. Lu, D. J. Li, and S. C. Tong, “Adaptive controller design-based ABLF for a class of nonlinear time-varying state constraint systems,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 47, no. 7, pp. 1546–1553, Jul. 2017. doi: 10.1109/TSMC.2016.2633007
|
[30] |
L. Weiss and E. F. Infante, “On the stability of systems defined over a finite time interval,” Proc. the National Academy of Sciences of the United States of America, vol. 54, no. 1, pp. 44–48, 1965.
|
[31] |
F. Amato, G. Carannante, G. D. Tommasi, and A. Pironti, “Input-output finite-time stability of linear systems: Necessary and sufficient conditions,” IEEE Trans. Automatic Control, vol. 57, no. 12, pp. 3051–3063, Dec. 2012. doi: 10.1109/TAC.2012.2199151
|
[32] |
Z. Wang, Y. Xu, R. Q. Lu, and H. Peng, “Finite-time state estimation for coupled markovian neural networks with sensor nonlinearities,” IEEE Trans. Neural Networks and Learning Systems, vol. 28, no. 3, pp. 630–638, Mar. 2017. doi: 10.1109/TNNLS.2015.2490168
|
[33] |
J. P. Yu, P. Shi, and L. Zhao, “Finite-time command filtered backstepping control for a class of nonlinear systems,” Automatica, vol. 92, pp. 173–180, 2018. doi: 10.1016/j.automatica.2018.03.033
|
[34] |
T. S. Li, R. Zhao, C. L. P. Chen, L. Y. Fang, and C. Liu, “Finite-time formation control of under-actuated ships using nonlinear sliding mode control,” IEEE Trans. Cybernetics, vol. 48, no. 11, pp. 3243–3253, Nov. 2018. doi: 10.1109/TCYB.2018.2794968
|
[35] |
X. Jin, “Adaptive finite-time fault-tolerant tracking control for a class of MIMO nonlinear systems with output constraints,” Int. J. Robust and Nonlinear Control, vol. 27, no. 5, pp. 722–741, 2016.
|
[36] |
J. Song, Y. G. Niu, and Y. Y. Zou, “Finite-time sliding mode control synthesis under explicit output constraint,” Automatica, vol. 65, pp. 111–114, 2016. doi: 10.1016/j.automatica.2015.11.037
|
[37] |
C. X. Wang and Y. Q. Wu, “Finite-time tracking control for strict-feedback nonlinear systems with time-varying output constraints,” Int. J. Systems Science, vol. 49, no. 7, pp. 1–10, Jan. 2018.
|
[38] |
J. W. Xia, J. Zhang, W. Sun, B. Y. Zhang, and Z. Wang, “Finite-time adaptive fuzzy control for nonlinear systems with full state constraints,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 49, no. 7, pp. 1541–1548, Jul. 2019. doi: 10.1109/TSMC.2018.2854770
|
[39] |
S. P. Huang and Z. R. Xiang, “Finite-time stabilization of a class of switched nonlinear systems with state constraints,” Int. J. Control, vol. 91, no. 6, pp. 1300–1313, 2017.
|
[40] |
H. Y. Li, S. Y. Zhao, W. He, and R. Q. Lu, “Adaptive finite-time tracking control of full states constrained nonlinear systems with dead-zone,” Automatica, vol. 100, pp. 99–107, 2019. doi: 10.1016/j.automatica.2018.10.030
|
[41] |
K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov functions for the control of output-constrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, 2009. doi: 10.1016/j.automatica.2008.11.017
|