IEEE/CAA Journal of Automatica Sinica
Citation: | Bo Huang, MengChu Zhou, Cong Wang, Abdullah Abusorrah and Yusuf Al-Turki, "Deadlock-free Supervisor Design for Robotic Manufacturing Cells With Uncontrollable and Unobservable Events," IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 597-605, Mar. 2021. doi: 10.1109/JAS.2020.1003207 |
[1] |
Q. Zhu, M. Zhou, Y. Qiao, and N. Wu, “Petri net modeling and scheduling of a close-down process for time-constrained single-arm cluster tools,” IEEE Trans. Syst.,Man,Cybern. Syst., vol. 48, no. 3, pp. 389–400, Mar. 2018. doi: 10.1109/TSMC.2016.2598303
|
[2] |
N. Ran, H. Su, A. Giua, and C. Seatzu, “Codiagnosability analysis of bounded Petri nets,” IEEE Trans. Autom. Control, vol. 63, no. 4, pp. 1192–1199, Apr. 2018. doi: 10.1109/TAC.2017.2742659
|
[3] |
N. Ran, A. Giua, and C. Seatzu, “Enforcement of diagnosability in labeled Petri nets via optimal sensor selection,” IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2997–3004, Jul. 2019. doi: 10.1109/TAC.2018.2874020
|
[4] |
J. Sha, Y. Du, and L. Qi, “A user requirement oriented web service discovery approach based on logic and threshold Petri net,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1528–1542, Nov. 2019. doi: 10.1109/JAS.2019.1911657
|
[5] |
J. Zhou, J. Wang, and J. Wang, “A simulation engine for stochastic timed Petri nets and application to emergency healthcare systems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 969–980, Jul. 2019. doi: 10.1109/JAS.2019.1911576
|
[6] |
S. Wang, D. You, and M. Zhou, “A necessary and sufficient condition for a resource subset to generate a strict minimal siphon in S4PR,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 4173–4179, Aug. 2017. doi: 10.1109/TAC.2017.2677859
|
[7] |
D. You, S. Wang, and C. Seatzu, “Verification of fault-predictability in labeled Petri nets using predictor graphs,” IEEE Trans. Autom. Control, vol. 64, no. 10, pp. 4353–4360, Oct. 2019. doi: 10.1109/TAC.2019.2897272
|
[8] |
E. Badouel and P. Darondeau, “Theory of regions, ” in Advanced Course on Petri Nets. Springer, 1996, pp. 529–586.
|
[9] |
M. Uzam, “An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions,” Int. J. Adv. Manuf. Tech., vol. 19, no. 3, pp. 192–208, Feb. 2002. doi: 10.1007/s001700200014
|
[10] |
Y. Chen, Z. Li, M. Khalgui, and O. Mosbahi, “Design of a maximally permissive liveness-enforcing Petri net supervisor for flexible manufacturing systems,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 2, pp. 374–393, Apr. 2011. doi: 10.1109/TASE.2010.2060332
|
[11] |
Y. Huang, Y. Pan, and M. Zhou, “Computationally improved optimal deadlock control policy for flexible manufacturing systems,” IEEE Trans. Syst.,Man,Cybern. A, vol. 42, no. 2, pp. 404–415, Mar. 2012. doi: 10.1109/TSMCA.2011.2164241
|
[12] |
B. Huang, M. Zhou, Y. Huang, and Y. Yang, “Supervisor synthesis for FMS based on critical activity places,” IEEE Trans. Syst.,Man,Cybern. Syst., vol. 49, no. 5, pp. 881–890, May 2019. doi: 10.1109/TSMC.2017.2732442
|
[13] |
A. Ghaffari, N. Rezg, and X. Xie, “Design of a live and maximally permissive Petri net controller using the theory of regions,” IEEE Trans. Robot. Autom., vol. 19, no. 1, pp. 137–141, Feb. 2003. doi: 10.1109/TRA.2002.807555
|
[14] |
S. Wang, D. You, and C. Wang, “Optimal supervisor synthesis for Petri nets with uncontrollable transitions: A bottom-up algorithm,” Inform. Sciences, vol. 363, pp. 261–273, Oct. 2016. doi: 10.1016/j.ins.2015.11.003
|
[15] |
D. You, S. Wang, Z. Li, and C. Wang, “Computation of an optimal transformed linear constraint in a class of Petri nets with uncontrollable transitions,” IEEE Access, vol. 5, pp. 6780–6790, Apr. 2017. doi: 10.1109/ACCESS.2017.2696029
|
[16] |
J. O. Moody and P. J. Antsaklis, “Petri net supervisors for DES with uncontrollable and unobservable transitions,” IEEE Trans. Autom. Control, vol. 45, no. 3, pp. 462–476, Mar. 2000. doi: 10.1109/9.847725
|
[17] |
J. Luo and M. Zhou, “Petri-net controller synthesis for partially controllable and observable discrete event systems,” IEEE Trans. Autom. Control, vol. 62, no. 3, pp. 1301–1313, Mar. 2017. doi: 10.1109/TAC.2016.2586604
|
[18] |
M. Qin, Z. Li, M. Zhou, M. Khalgui, and O. Mosbahi, “Deadlock prevention for a class of Petri nets with uncontrollable and unobservable transitions,” IEEE Trans. Syst.,Man,Cybern. A, vol. 42, no. 3, pp. 727–738, May 2012. doi: 10.1109/TSMCA.2011.2169955
|
[19] |
D. You, S. Wang, and C. Seatzu, “Supervisory control of a class of Petri nets with unobservable and uncontrollable transitions,” Inform. Sciences, vol. 501, pp. 635–654, Oct. 2019. doi: 10.1016/j.ins.2018.10.018
|
[20] |
B. Huang, M. Zhou, G. Zhang, A. C. Ammari, A. Alabdulwahab, and A. G. Fayoumi, “Lexicographic multiobjective integer programming for optimal and structurally minimal Petri net supervisors of automated manufacturing systems,” IEEE Trans. Syst.,Man,Cybern. Syst., vol. 45, no. 11, pp. 1459–1470, Nov. 2015. doi: 10.1109/TSMC.2015.2415765
|
[21] |
B. Hrúz and M. Zhou, Modeling and Control of Discreteevent Dynamic Systems: With Petri Nets and Other Tools. London, UK: Springer, 2007.
|
[22] |
B. Huang, Y. Pei, Y. Yang, M. Zhou, and J. Li, “Near-optimal and minimal PN supervisors of FMS with uncontrollability and unobservability, ” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics. Banff, Canada, 2017, pp. 3715–3720.
|
[23] |
M. Uzam and M. Zhou, “An iterative synthesis approach to Petri net-based deadlock prevention policy for flexible manufacturing systems,” IEEE Trans. Syst.,Man,Cybern. A, vol. 37, no. 3, pp. 362–371, May 2007. doi: 10.1109/TSMCA.2007.893484
|
[24] |
K. Yamalidou, J. Moody, M. Lemmon, and P. Antsaklis, “Feedback control of Petri nets based on place invariants,” Automatica, vol. 32, no. 1, pp. 15–28, Jan. 1996. doi: 10.1016/0005-1098(95)00103-4
|
[25] |
Y. Chen and Z. Li, “Design of a maximally permissive liveness-enforcing supervisor with a compressed supervisory structure for flexible manufacturing systems,” Automatica, vol. 47, no. 5, pp. 1028–1034, May 2011. doi: 10.1016/j.automatica.2011.01.070
|
[26] |
Y. Chen and K. Barkaoui, “Maximally permissive Petri net supervisors for flexible manufacturing systems with uncontrollable and unobservable transitions,” Asian J. Control, vol. 16, no. 6, pp. 1646–1658, Nov. 2014. doi: 10.1002/asjc.811
|
[27] |
R. Zhu, “A deadlock prevention approach for flexible manufacturing systems with uncontrollable transitions in their Petri net models,” Asian J. Control, vol. 14, no. 1, pp. 217–229, Jan. 2012. doi: 10.1002/asjc.369
|
[28] |
B. Huang, H. Zhu, G. Zhang, and X. Lu, “On further reduction of constraints in nonpure Petri net supervisors for optimal deadlock control of flexible manufacturing systems,” IEEE Trans. Syst.,Man,Cybern. Syst., vol. 45, no. 3, pp. 542–543, Mar. 2015. doi: 10.1109/TSMC.2014.2347915
|
[29] |
Y. Fu, M. Zhou, X. Guo, and L. Qi, “Scheduling dual-objective stochastic hybrid flow shop with deteriorating jobs via bi-population evolutionary algorithm,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 50, no. 12, pp. 5037–5048, Dec. 2020.
|
[30] |
X. Guo, M. Zhou, S. Liu, and L. Qi, “Lexicographic multiobjective scatter search for the optimization of sequence-dependent selective disassembly subject to multiresource constraints,” IEEE Trans. Cybernetics, vol. 50, no. 7, pp. 3307–3317, Jul. 2020.
|
[31] |
Q. Kang, S. W. Feng, M. Zhou, A. C. Ammari, and K. Sedraoui, “Optimal load scheduling of plug-in hybrid electric vehicles via weight-aggregation multi-objective evolutionary algorithms,” IEEE Trans. Intelligent Transportation Systems, vol. 18, no. 9, pp. 2557–2568, Sept. 2017.
|
[32] |
Z. Cao, C. Lin, M. Zhou, and R. Huang, “Scheduling semiconductor testing facility by using cuckoo search algorithm with reinforcement learning and surrogate modeling,” IEEE Trans. Automation Science and Engineering, vol. 16, no. 2, pp. 825–837, Apr. 2019.
|
[33] |
H. Yuan, M. Zhou, Q. Liu, and A. Abusorrah, “Fine-grained resource provisioning and task scheduling for heterogeneous applications in distributed green clouds,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1380–1393, Sept. 2020.
|
[34] |
P. Zhang and M. Zhou, “Dynamic cloud task scheduling based on a two-stage strategy,” IEEE Trans. Automation Science and Engineering, vol. 15, no. 2, pp. 772–783, Apr. 2018.
|