IEEE/CAA Journal of Automatica Sinica
Citation: | Hongbo Zhao, Yongming Wen, Sentang Wu, and Jia Deng, "Dynamic Evaluation Strategies for Multiple Aircrafts Formation Using Collision and Matching Probabilities," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 890-904, Apr. 2021. doi: 10.1109/JAS.2020.1003198 |
[1] |
S. T. Wu, Cooperative Guidance & Control of Missile Autonomous Formation. Beijing: National Defense Industry Press, 2015.
|
[2] |
S. T. Wu, Cooperative Flight Control System. Beijing: Science Press, Jun. 2018.
|
[3] |
W. Zha, J. Chen, and Z. Peng, “Dynamic multi-team antagonistic games model with incomplete information and its application to multi-UAV,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 1, pp. 74–84, Jan. 2015. doi: 10.1109/JAS.2015.7032908
|
[4] |
Y. Hong, J. Hu, and L. Gao, “Tracking control for multi-agent consensus with an active leader and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, 2007.
|
[5] |
X. Zhang, X. Liu, and Z. Feng, “Distributed containment control of singular heterogeneous multi-agent systems,” J. Franklin Institute-Engineering and Applied Mathematics, vol. 357, no. 3, pp. 1378–1399, 2020.
|
[6] |
Q. Ali and S. Montenegro, “Explicit model following distributed control scheme for formation flying of mini UAVs,” IEEE Access, vol. 4, pp. 397–406, 2016. doi: 10.1109/ACCESS.2016.2517203
|
[7] |
P. K. C. Wang, “Navigation strategies for multiple autonomous mobile robots moving in formation,” J. Robot. Syst., vol. 8, pp. 177–195, 1991.
|
[8] |
W. Ni and D. Cheng, “Leader-following consensus of multi-agent systems under fixed and switching topologies,” Syst. Control Lett., vol. 59, no. 3–4, pp. 209–217, 2010.
|
[9] |
G. Notarstefano, M. Egerstedt, and M. Haque, “Containment in leader-follower networks with switching communication topologies,” Automatica, vol. 47, no. 5, pp. 1035–1040, 2011. doi: 10.1016/j.automatica.2011.01.077
|
[10] |
D. Herrera, F. Roberti, M. Toibero, and R. Carelli, “Human interaction dynamics for its use in mobile robotics: Impedance control for leader-follower formation,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 696–703, Oct. 2017. doi: 10.1109/JAS.2017.7510631
|
[11] |
M. A. Lewis and K. H. Tan, “High precision formation control of mobile robots using virtual structures,” Autonomous Robots, vol. 4, no. 4, pp. 387–403, 1997.
|
[12] |
N. Ganganath, C. T. Cheng, X. F. Wang, and C. Tse, “Community-based informed agents selection for flocking with a virtual leader,” Int. J. Control Automation and Systems, vol. 15, pp. 394–403, Feb. 2017. doi: 10.1007/s12555-015-0170-4
|
[13] |
R. C. Arkin and T. Balch, “Behavior-based formation control for multirobot teams,” IEEE Trans. Robot. Autom., vol. 14, pp. 926–939, 1998. doi: 10.1109/70.736776
|
[14] |
D. D. Xu, X. N. Zhang, Z. Q. Zhu, C. L. Chen, and P. Yang, “Behavior-based formation control of swarm robots,” Mathematical Problems in Engineering, Article No. 2014. DOI: 10.1155/2014/205759
|
[15] |
G. Antonelli, F. Arrichiello, and S. Chiaverini, “Experiments of formation control with multirobot systems using the nullspace-based behavioral control,” IEEE Trans. Control Syst. Technol., vol. 17, no. 5, pp. 1173–1182, Apr. 2009. doi: 10.1109/TCST.2008.2004447
|
[16] |
C. Du, X. Liu, W. Ren, P. Lu, and H. Liu, “Finite-time consensus for linear multi-agent systems via event-triggered strategy without continuous communication,” IEEE Trans. Control of Network Systems, vol. 7, no. 1, Article No. 2020.
|
[17] |
Q. Liu, T. Zhou, S. Guo, Z. Wang, D. Wang, and W. Wang, “Distributed containment control of multi-agent systems under asynchronous switching and stochastic disturbances,” IET Control Theory &Applications, vol. 13, no. 8, pp. 1105–1112, 2019.
|
[18] |
C. Huang, G. S. Zhai, and G. S. Xu, “Necessary and sufficient conditions for consensus in third order multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 6, pp. 1044–1053, Nov. 2018. doi: 10.1109/JAS.2018.7511222
|
[19] |
J. Jin and N. Gans, “Collision-free formation and heading consensus of nonholonomic robots as a pose regulation problem,” Robotics and Autonomous Systems, vol. 95, pp. 25–36, 2017. doi: 10.1016/j.robot.2017.05.008
|
[20] |
P. Anton and T. Roberto, “A tutorial on modeling and analysis of dynamic social networks. Part II,” Annual Reviews in Control, vol. 45, pp. 166–190, Mar. 2018. doi: 10.1016/j.arcontrol.2018.03.005
|
[21] |
W. He and Y. Dong, “Adaptive fuzzy neural network control for a constrained robot using impedance learning,” IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 4, pp. 1174–1186, 2017.
|
[22] |
H. J. Gao, W. He, C. Zhou, and C. Y. Sun, “Neural network control of a two-link flexible robotic manipulator using assumed mode method,” IEEE Trans. Industrial Informatics, vol. 15, no. 2, pp. 755–765, 2018.
|
[23] |
Y. Wu and R. Lu, “Event-based control for network systems via integral quadratic constraints,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1386–1394, 2018.
|
[24] |
Y. Wu, R. Lu, P. Shi, H. Su, and Z. Wu, “Sampled-data synchronization of complex networks with partial couplings and T-S fuzzy nodes,” IEEE Trans. Fuzzy Systems, vol. 26, no. 2, pp. 782–793, Apr. 2018. doi: 10.1109/TFUZZ.2017.2688490
|
[25] |
A. Wang, X. Liao, and H. He, “Event-triggered differentially private average consensus for multi-agent network,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 75–83, Jan. 2019. doi: 10.1109/JAS.2019.1911327
|
[26] |
C. Viel, S. Bertrand, M. Kieffer, and H. Piet-Lahanier, “Distributed event-triggered control strategies for multi-agent formation stabilization and tracking,” Automatica, vol. 106, pp. 110–116, 2019. doi: 10.1016/j.automatica.2019.04.024
|
[27] |
X.-X. Yang, M. Lei, S.-L. Zhou, and G.-Y. Yin, “Complex formation control of large-scale intelligent autonomous vehicles,” Mathematical Problems in Engineering, vol. 2012, no. 6, Article No. 2012. doi: 10.1155/2012/241916
|
[28] |
D. B. Wilson, A. H. Goktogan, and S. Sukkarieh, “Vision-aided guidance and navigation for close formation flight,” J. Field Robotics, vol. 33, pp. 661–686, Aug. 2016. doi: 10.1002/rob.21637
|
[29] |
D. Li, S. S. Ge, W. He, G. Ma, and L. Xie, “Multilayer formation control of multi-agent systems,” Automatica, vol. 109, Article No. 2019.
|
[30] |
H. Liu, Y. Tian, F. L. Lewis, Y. Wan, and K. P. Valavanis, “Robust formation tracking control for multiple quadrotors under aggressive maneuvers,” Automatica, vol. 105, pp. 179–185, 2019. doi: 10.1016/j.automatica.2019.03.024
|
[31] |
Q. Wang, Y. Wang, and H. Zhang, “The formation control of multi-agent systems on a circle,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 148–154, Jan. 2018. doi: 10.1109/JAS.2016.7510022
|
[32] |
P. Gurfil and E. Kivelevitch, “Flock properties effect on task assignment and formation flying of cooperating unmanned aerial vehicles,” Proc. the Institution of Mechanical Engineers Part G-J. Aerospace Engineering, vol. 221, pp. 401–418, Jun. 2007. doi: 10.1243/09544100JAERO120
|
[33] |
G. Dudek, M. R. M. Jenkin, E. Milios, and D. Wilkes, “A taxonomy for multi-agent robotics,” Autonomous Robots, vol. 3, pp. 375–397, 1996.
|
[34] |
R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and theory,” IEEE Trans. Automatic Control, vol. 51, pp. 401–420, Mar. 2006. doi: 10.1109/TAC.2005.864190
|
[35] |
Q. Yuan, J. Zhan, and X. Li, “Outdoor flocking of quadcopter drones with decentralized model predictive control,” ISA Transactions, vol. 71, no. 1, pp. 84–92, 2017.
|
[36] |
M. Khalili, X. Zhang, M. A. Gilson, and Y. Cao, “Distributed fault-tolerant formation control of cooperative mobile robots,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 459–464, 2018. doi: 10.1016/j.ifacol.2018.09.617
|
[37] |
Z. Yao, S. T. Wu, and Y. M. Wen, “Formation generation for multiple unmanned vehicles using multi-agent hybrid social cognitive optimization based on the internet of things,” Sensors (Basel,Switzerland)
|
[38] |
Y. Wen, S. Wu, W. Liu, J. Deng, and X. Wu, “A collision forecast and coordination algorithm in configuration control of missile autonomous formation,” IEEE Access, vol. 5, pp. 1188–1199, 2017. doi: 10.1109/ACCESS.2017.2652984
|
[39] |
H. Zhao, S. Wu, Y. Wen, W. Liu, and X. Wu, “Modeling and flight experiments for swarms of high dynamic UAVs: A stochastic configuration control system with multiplicative noises,” Sensors, vol. 19, Article No. 2019.
|
[40] |
C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral model,” ACM SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 25–34, 1987. doi: 10.1145/37402.37406
|
[41] |
Y. Q. Zhou, Stochastic Processes Theory. Beijing: Beihang University Press, 2013.
|