A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 7
Jul.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
T. Bai, S. Y. Li, and Y. Y. Zou, "Distributed MPC for Reconfigurable Architecture Systems via Alternating Direction Method of Multipliers," IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1336-1344, Jul. 2021. doi: 10.1109/JAS.2020.1003195
Citation: T. Bai, S. Y. Li, and Y. Y. Zou, "Distributed MPC for Reconfigurable Architecture Systems via Alternating Direction Method of Multipliers," IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1336-1344, Jul. 2021. doi: 10.1109/JAS.2020.1003195

Distributed MPC for Reconfigurable Architecture Systems via Alternating Direction Method of Multipliers

doi: 10.1109/JAS.2020.1003195
Funds:  This work was support by the National Natural Science Foundation of China (61833012, 61773162, 61590924) and the Natural Science Foundation of Shanghai (18ZR1420000)
More Information
  • This paper investigates the distributed model predictive control (MPC) problem of linear systems where the network topology is changeable by the way of inserting new subsystems, disconnecting existing subsystems, or merely modifying the couplings between different subsystems. To equip live systems with a quick response ability when modifying network topology, while keeping a satisfactory dynamic performance, a novel reconfiguration control scheme based on the alternating direction method of multipliers (ADMM) is presented. In this scheme, the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control. Meanwhile, by employing the powerful ADMM algorithm, the iterative formulas for solving the reconfigured optimization problem are obtained, which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response. Ultimately, the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.

     

  • loading
  • [1]
    P. D. Christofides, R. Scattolini, D. M. de la Pena, and J. F. Liu, “Distributed model predictive control: A tutorial review and future research directions,” Comput. Chem. Eng., vol. 51, pp. 21–41, 2013. doi: 10.1016/j.compchemeng.2012.05.011
    [2]
    Z. M. Wang and C. J. Ong, “Distributed model predictive control of linear discrete-time systems with local and global constraints,” Automatica, vol. 81, pp. 184–195, 2017. doi: 10.1016/j.automatica.2017.03.027
    [3]
    Y. Zhang, X. J. Liu, and B. Qu, “Distributed model predictive load frequency control of multi-area power system with dfigs,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 125–135, 2017. doi: 10.1109/JAS.2017.7510346
    [4]
    A. Zakharov, E. Zattoni, M. Yu, and S.-L. Jämsä-Jounela, “A performance optimization algorithm for controller reconfiguration in fault tolerant distributed model predictive control,” J. Process Control, vol. 34, pp. 56–69, 2015. doi: 10.1016/j.jprocont.2015.07.006
    [5]
    Y. Wei, J. Wu, S. Li, and N. Li, “Distributed model predictive control based on neighbourhood optimization for high speed train,” in Proc. IEEE 10th Int. Conf. Control and Autom. (ICCA). Hangzhou, China, 2013, pp. 664–669.
    [6]
    P. Giselsson and A. Rantzer, “On feasibility, stability and performance in distributed model predictive control,” IEEE Trans. Autom. Control, vol. 59, no. 4, pp. 1031–1036, 2013.
    [7]
    S. Y. Li, Y. Zheng, and Z. L. Lin, “Impacted-region optimization for distributed model predictive control systems with constraints,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 4, pp. 1447–1460, 2014.
    [8]
    J. Bendtsen, K. Trangbaek, and J. Stoustrup, “Plug-and-play control — modifying control systems online,” IEEE Trans. Control Syst. Technol., vol. 21, no. 1, pp. 79–93, 2011.
    [9]
    S. Riverso, F. Boem, G. Ferrari-Trecate, and T. Parisini, “Plug-and-play fault detection and control-reconfiguration for a class of nonlinear largescale constrained systems,” IEEE Trans. Autom. Control, vol. 61, no. 12, pp. 3963–3978, 2016. doi: 10.1109/TAC.2016.2535724
    [10]
    S. Riverso, M. Farina, and G. Ferrari-Trecate, “Plug-and-play decentralized model predictive control for linear systems,” IEEE Trans. Autom. Control, vol. 58, no. 10, pp. 2608–2614, 2013. doi: 10.1109/TAC.2013.2254641
    [11]
    M. J. Tippett and J. Bao, “Reconfigurable distributed model predictive control,” Chem. Eng. Sci., vol. 136, pp. 2–19, 2015. doi: 10.1016/j.ces.2015.01.040
    [12]
    D. J. Burns, C. Danielson, J. Q. Zhou, and S. Di Cairano, “Reconfigurable model predictive control for multievaporator vapor compression systems,” IEEE Trans. Control Syst. Technol., vol. 26, no. 3, pp. 984–1000, 2017.
    [13]
    S. Riverso, M. Farina, and G. Ferrari-Trecate, “Plug-and-play model predictive control based on robust control invariant sets,” Automatica, vol. 50, no. 8, pp. 2179–2186, 2014. doi: 10.1016/j.automatica.2014.06.004
    [14]
    M. N. Zeilinger, Y. Pu, S. Riverso, G. Ferrari-Trecate, and C. N. Jones, “Plug and play distributed model predictive control based on distributed invariance and optimization,” in Proc. 52nd IEEE Conf. Decision and Control (CDC). Florence, Italy, 2013, pp. 5770–5776.
    [15]
    D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite element approximation,” Comput. Math. Appl., vol. 2, no. 1, pp. 17–40, 1976. doi: 10.1016/0898-1221(76)90003-1
    [16]
    E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal parameter selection for the alternating direction method of multipliers (admm): quadratic problems,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 644–658, 2014.
    [17]
    R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I. Jordan, “A general analysis of the convergence of admm,” arXiv preprint arXiv: 1502.02009, 2015.
    [18]
    B. X. Zhang and Z. B. Zhu, “Linearized proximal alternating direction method of multipliers for parallel magnetic resonance imaging,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 763–769, 2016.
    [19]
    Y. Wang, W. T. Yin, and J. S. Zeng, “Global convergence of admm in nonconvex nonsmooth optimization,” J. Sci. Comput., vol. 78, no. 1, pp. 29–63, 2019. doi: 10.1007/s10915-018-0757-z
    [20]
    S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.
    [21]
    F. Farokhi, I. Shames, and K. H. Johansson, “Distributed mpc via dual decomposition and alternative direction method of multipliers,” in Distributed Model Predictive Control Made Easy. Springer, 2014, pp. 115–131.
    [22]
    P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based distributed support vector machines,” J. Mach. Learn. Res., vol. 11, pp. 1163–1707, 2010.
    [23]
    E. P. Gatzke, E. S. Meadows, C. Wang, and F. J. Doyle Iii, “Model based control of a four-tank system,” Comput. Chem. Eng., vol. 24, no. 2–7, pp. 1503–1509, 2000. doi: 10.1016/S0098-1354(00)00555-X

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1295) PDF downloads(69) Cited by()

    Highlights

    • A reconfiguration control strategy is presented in presence of three typical modes;
    • A non-cooperative distributed MPC scheme combined with ADMM algorithm is proposed;
    • A benchmark four-tank plant with reconfigurable architecture is employed.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return