IEEE/CAA Journal of Automatica Sinica
Citation: | Ning Wang and Xiaojian Li, "Secure Synchronization Control for a Class ofCyber-Physical Systems WithUnknown Dynamics," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1215-1224, Sept. 2020. doi: 10.1109/JAS.2020.1003192 |
[1] |
V. Reppa, M. M. Polycarpou, and C. G. Panayiotou, “Distributed sensor fault diagnosis for a network of interconnected cyberphysical systems,” IEEE Trans. Control of Network Systems, vol. 2, no. 1, pp. 11–23, 2015. doi: 10.1109/TCNS.2014.2367362
|
[2] |
A. Bidram, A. Davoudi, F. L. Lewis, and J. M. Guerrero, “Distributed cooperative secondary control of microgrids using feedback linearization,” IEEE Trans. Power Systems, vol. 28, no. 3, pp. 3462–3470, 2013. doi: 10.1109/TPWRS.2013.2247071
|
[3] |
A. Isidori, L. Marconi, and G. Casadei, “Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory,” IEEE Trans. Autom. Control, vol. 59, no. 10, pp. 2680–2691, 2014. doi: 10.1109/TAC.2014.2326213
|
[4] |
M. H. Zhu and S. Martinez, “On the performance analysis of resilient networked control systems under replay attacks,” IEEE Trans. Autom. Control, vol. 59, no. 3, pp. 804–808, 2014. doi: 10.1109/TAC.2013.2279896
|
[5] |
H. Liu, X. H. Cao, J. P. He, P. Cheng, C. G. Li, J. M. Chen, and Y. X. Sun, “Distributed identification of the most critical node for average consensus,” IEEE Trans. Signal Processing, vol. 63, no. 16, pp. 4315–4328, 2015. doi: 10.1109/TSP.2015.2441039
|
[6] |
M. S. Rahman, M. A. Mahmud, A. M. T. Oo, and H. R. Pota, “Multi-agent approach for enhancing security of protection schemes in cyber-physical energy systems,” IEEE Trans. Industrial Informatics, vol. 13, no. 2, pp. 436–447, 2017. doi: 10.1109/TII.2016.2612645
|
[7] |
X. Z. Jin, G. H. Yang, and W. W. Che, “Adaptive synchronization of master-slave large-scale systems against bias actuators and network attenuations,” Int. J. Control,Autom. and Systems, vol. 10, no. 6, pp. 1102–1110, 2012. doi: 10.1007/s12555-012-0604-1
|
[8] |
Y. Wang, J. L. Xiong, and D. W. C. Ho, “Decentralized control scheme for large-scale systems defined over a graph in presence of communication delays and random missing measurements,” Automatica, vol. 98, pp. 190–200, 2018. doi: 10.1016/j.automatica.2018.09.023
|
[9] |
A. Y. Lu and G. H. Yang, “Secure state estimation for cyber-physical systems under sparse sensor attacks via a switched Luenberger observer,” Information Sciences, vol. 417, pp. 454–464, 2017. doi: 10.1016/j.ins.2017.07.029
|
[10] |
Y. Shoukry and P. Tabuada, “Event-triggered state observers for sparse sensor noise/attacks,” IEEE Trans. Autom. Control, vol. 61, no. 8, pp. 2079–2091, 2016. doi: 10.1109/TAC.2015.2492159
|
[11] |
D. R. Ding, Z. D. Wang, D. W. C. Ho, and G. L. Wei, “Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks,” Automatica, vol. 78, pp. 231–240, 2017. doi: 10.1016/j.automatica.2016.12.026
|
[12] |
X. Huang and J. X. Dong, “Reliable control policy of cyber-physical systems against a class of frequency-constrained sensor and actuator attacks,” IEEE Trans. Cybernetics, vol. 48, no. 12, pp. 3432–3439, 2018. doi: 10.1109/TCYB.2018.2815758
|
[13] |
G. Franzè, F. Tedesco, and W. Lucia, “Resilient control for cyberPhysical systems subject to replay attacks,” IEEE Control Systems Letters, vol. 3, no. 4, pp. 984–989, 2019. doi: 10.1109/LCSYS.2019.2920507
|
[14] |
C. D. Persis and P. Tesi, “Input-to-state stabilizing control under denial-ofservice,” IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 2930–2944, 2015. doi: 10.1109/TAC.2015.2416924
|
[15] |
S. Feng and P. Tesi, “Resilient control under denial-of-service: Robust design,” Automatica, vol. 79, pp. 42–51, 2017. doi: 10.1016/j.automatica.2017.01.031
|
[16] |
V. S. Dolk, P. Tesi, C. De Persis, and W. P. M. H. Heemels, “Eventtriggered control systems under denial-of-service attacks,” IEEE Trans. Control of Network Systems, vol. 4, no. 1, pp. 93–105, 2017. doi: 10.1109/TCNS.2016.2613445
|
[17] |
A. Y. Lu and G. H. Yang, “Input-to-state stabilizing control for cyberphysical systems with multiple transmission channels under denial of service,” IEEE Trans. Autom. Control, vol. 63, no. 6, pp. 1813–1820, 2018. doi: 10.1109/TAC.2017.2751999
|
[18] |
S. L. Hu, D. Yue, X. L. Chen, Z. H. Cheng, and X. P. Xie, “Resilient H∞ filtering for event-triggered networked systems under nonperiodic DoS jamming attacks,” IEEE Trans. Systems, Man, and Cybernetics: Systems, Mar. 2019.
|
[19] |
L. W. An and G. H. Yang, “Decentralized adaptive fuzzy secure control for nonlinear uncertain interconnected systems against intermittent DoS attacks,” IEEE Trans. Cybernetics, vol. 49, no. 3, pp. 827–838, 2017.
|
[20] |
L. H. Peng, L. Shi, X. H. Cao, and C. Y. Sun, “Optimal attack energy allocation against remote state estimation,” IEEE Trans. Autom. Control, vol. 63, no. 7, pp. 2199–2205, 2017.
|
[21] |
K. M. Ding, Y. Z. Li, D. E. Quevedo, S. Dey, and L. Shi, “A multi-channel transmission schedule for remote state estimation under DoS attacks,” Automatica, vol. 78, pp. 194–201, 2017. doi: 10.1016/j.automatica.2016.12.020
|
[22] |
B. Chen, D. W. C. Ho, W. A. Zhang, and L. Yu, “Distributed dimensionality reduction fusion estimation for cyber-physical systems under DoS attacks,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 49, no. 2, pp. 455–468, 2017.
|
[23] |
D. Zhang, L. Liu, and G. Feng, “Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and DoS attack,” IEEE Trans. Cybernetics, vol. 49, no. 4, pp. 1501–1511, 2018.
|
[24] |
Y. W. Wang, H. O. Wang, J. W. Xiao, and Z. H. Guan, “Synchronization of complex dynamical networks under recoverable attacks,” Automatica, vol. 46, no. 1, pp. 197–203, 2010. doi: 10.1016/j.automatica.2009.10.024
|
[25] |
Y. Xu, M. Fang, P. Shi, and Z. G. Wu, “Event-based secure consensus of mutiagent systems against DoS attacks,” IEEE Trans. Cybernetics, Jun. 2019.
|
[26] |
Z. Feng and G. Q. Hu, “Secure cooperative event-triggered control of linear multiagent systems under DoS attacks,” IEEE Trans. Control Systems Technology, 2019.
|
[27] |
B. Kiumarsi and F. L. Lewis, “Output synchronization of heterogeneous discrete-time systems: A model-free optimal approach,” Automatica, vol. 84, pp. 86–94, 2017. doi: 10.1016/j.automatica.2017.07.004
|
[28] |
H. Modares, S. P. Nageshrao, G. A. D. Lopes, R. Babuška, and F. L. Lewis, “Optimal model-free output synchronization of heterogeneous systems using off-policy reinforcement learning,” Automatica, vol. 71, pp. 334–341, 2016. doi: 10.1016/j.automatica.2016.05.017
|
[29] |
N. Wang and X. J. Li, “Optimal output synchronization control of a class of complex dynamical networks with partially unknown system dynamics,” IEEE Trans. Systems, Man, and Cybernetics: Systems, 2018.
|
[30] |
Y. W. Cao, G. H. Yang, and X. J. Li, “Optimal synchronization controller design for complex dynamical networks with unknown system dynamics,” J. Franklin Institute, vol. 356, no. 12, pp. 6071–6086, 2019. doi: 10.1016/j.jfranklin.2018.11.054
|
[31] |
M. Y. Li and Z. S. Shuai, “Global-stability problem for coupled systems of differential equations on networks,” J. Differential Equations, vol. 248, no. 1, pp. 1–20, 2010. doi: 10.1016/j.jde.2009.09.003
|
[32] |
H. Zhang, P. Cheng, L. Shi, and J. M. Chen, “Optimal denial-of-service attack scheduling with energy constraint,” IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 3023–3028, 2015. doi: 10.1109/TAC.2015.2409905
|
[33] |
H. Zhang, P. Cheng, L. Shi, and J. M. Chen, “Optimal DoS attack scheduling in wireless networked control system,” IEEE Trans. Control Systems Technology, vol. 24, no. 3, pp. 834–852, 2016.
|
[34] |
F. L. Lewis, D. Vrabie, and V. Syrmos, Optimal Control, 3rd edition, New York: Wiley, 2012.
|
[35] |
D. Kleinman, “On an iterative technique for Riccati equation computations,” IEEE Trans. Autom. Control, vol. 13, no. 1, pp. 114–115, 1968. doi: 10.1109/TAC.1968.1098829
|
[36] |
Y. Jiang and Z. P. Jiang, “Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics,” Automatica, vol. 48, pp. 2699–2704, 2012. doi: 10.1016/j.automatica.2012.06.096
|
[37] |
H. K. Khalil, Nonlinear Systems, 3rd edition, Prentice Hall, Englewood Cliffs, NJ, 2003.
|