A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 5
Sep.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Giuseppe Franzè, Domenico Famularo, Walter Lucia and Francesco Tedesco, "A Resilient Control Strategy for Cyber-Physical Systems Subject to Denial of Service Attacks: A Leader-Follower Set-Theoretic Approach," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1204-1214, Sept. 2020. doi: 10.1109/JAS.2020.1003189
Citation: Giuseppe Franzè, Domenico Famularo, Walter Lucia and Francesco Tedesco, "A Resilient Control Strategy for Cyber-Physical Systems Subject to Denial of Service Attacks: A Leader-Follower Set-Theoretic Approach," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1204-1214, Sept. 2020. doi: 10.1109/JAS.2020.1003189

A Resilient Control Strategy for Cyber-Physical Systems Subject to Denial of Service Attacks: A Leader-Follower Set-Theoretic Approach

doi: 10.1109/JAS.2020.1003189
More Information
  • Multi-agent systems are usually equipped with open communication infrastructures to improve interactions efficiency, reliability and sustainability. Although technologically cost-effective, this makes them vulnerable to cyber-attacks with potentially catastrophic consequences. To this end, we present a novel control architecture capable to deal with the distributed constrained regulation problem in the presence of time-delay attacks on the agents’ communication infrastructure. The basic idea consists of orchestrating the interconnected cyber-physical system as a leader-follower configuration so that adequate control actions are computed to isolate the attacked unit before it compromises the system operations. Simulations on a multi-area power system confirm that the proposed control scheme can reconfigure the leader-follower structure in response to denial of-service (DoS) attacks.

     

  • loading
  • [1]
    J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Trans. Aut. Contr., vol. 49, pp. 1465–1476, 2004. doi: 10.1109/TAC.2004.834433
    [2]
    A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Trans. Aut. Contr., vol. 48, pp. 988–1001, 2003. doi: 10.1109/TAC.2003.812781
    [3]
    Z. Lin, M. Broucke, and B. Francis, “Local control strategies for groups of mobile autonomous agents,” IEEE Trans. Aut. Contr., vol. 49, pp. 622–629, 2004. doi: 10.1109/TAC.2004.825639
    [4]
    R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time delays,” IEEE Trans. Aut. Contr., vol. 49, pp. 1520–1533, 2004. doi: 10.1109/TAC.2004.834113
    [5]
    H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation stability,” IEEE Trans. Aut. Rob., vol. 20, pp. 443–455, 2004. doi: 10.1109/TRA.2004.825275
    [6]
    L. Huang, M. C. Zhou, K. R. Hao, and E. Hou, “A survey of multi robot regular and adversarial patrolling,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 865–874, Jul. 2019. doi: 10.1109/JAS.2019.1911603
    [7]
    J. Shi, J. Wan, H. Yan, and H. Suo, “A Survey of cyber-physical systems,” in Proc. Int. Conf. Wireless Communications and Signal Processing, Nanjing, China, 2011.
    [8]
    F. M. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney, “Task scheduling for control oriented requirements for cyber-physical systems”, in Proc. Real-Time Systems Symp., pp. 47–56, Barcelona, Spain, 2008.
    [9]
    W. C. Xu, H. B. Zhou, N. Cheng, F. Lyu, W. S. Shi, J. Y. Chen, and X. M. Shen, “Internet of vehicles in big data era,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 19–35, Jan. 2018. doi: 10.1109/JAS.2017.7510736
    [10]
    C. Kwon, W. Liu, and I. Hwang, “Security analysis for cyber-physical systems against stealthy deception attacks,” in Proc. American Control Conf., pp. 3350–3355, 2013.
    [11]
    I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection, isolation, and reconfiguration methods,” IEEE Trans. Control Systems Technology, vol. 18, no. 3, pp. 636–653, 2010. doi: 10.1109/TCST.2009.2026285
    [12]
    W. P. M. H. Heemels, A. R. Teel, N. van de Wouw, and D. Nešić, “Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance,” IEEE Trans. Aut. Contr., vol. 88, no. 8, pp. 1781–1796, 1781.
    [13]
    X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2020. doi: 10.1109/JAS.2019.1911861
    [14]
    A. Cardenas, S. Amin, and S. Sastry, “Research challenges for the security of control systems,” HotSec., 2008.
    [15]
    S. Amin, A. A. Cardenas, and S. Sastry, “Safe and secure networked control systems under denial-of-service attacks”, in Proc. Hybrid Systems: Computation and Control, pp. 31–45, San Francisco, USA, 2009.
    [16]
    A. Gupta, C. Langbort, and T. Basar, “Optimal control in the presence of an intelligent jammer with limited actions”, in Proc. 49th IEEE Conf. Decision and Control, 2010.
    [17]
    Z.-H. Pang, G. P. Liu, and Z. Dong, “Secure networked control systems under denial of service attacks,” in Proc. 18th IFAC World Congr., 2011.
    [18]
    M. Zhu and S. Martinez, “On resilient consensus against replay attacks in operator-vehicle networks”, in Proc. American Control Conf., pp. 3553–3558, 2012.
    [19]
    Y. Shoukry, J. Araujo, P. Tabuada, M. Srivastava, and K. H. Johansson, “Minimax control for cyber-physical systems under network packet scheduling attacks,” in Proc. HiCoNS’13, Philadelphia, Pennsylvania, USA, 2013.
    [20]
    Z.-H. Pang and G.-P. Liu, “Design and implementation of secure networked predictive control systems under deception attacks,” IEEE Trans. Cont. Sys. Tech., vol. 20, no. 5, 2012.
    [21]
    Y. Mo and B. Sinopoli, “Secure control against replay attack,” in Proc. Conf. Comm., Contr. and Comp., Allerton, IL, USA, 2009.
    [22]
    A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “Design and implementation of secure networked predictive control systems under deception attacks,” Automatica, vol. 51, pp. 135–148, 2015. doi: 10.1016/j.automatica.2014.10.067
    [23]
    M. M. Rana, L. Li, and S. W. Su, “Cyber attack protection and control of microgrids,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 602–609, Mar. 2018. doi: 10.1109/JAS.2017.7510655
    [24]
    P. D. Christofides, R. Scattolini, D. M. de la Pena, and J. Liue, “Distributed model predictive control: A tutorial review and future research directions,” Comp. and Chemical Eng., vol. 51, pp. 21–41, 2013. doi: 10.1016/j.compchemeng.2012.05.011
    [25]
    F. Blanchini and S. Miani, Set-Theoretic Methods in Control, Boston, USA: Birkhäuser, Cham, 2015.
    [26]
    G. Franzè, F. Tedesco, and D. Famularo, “Model predictive control for constrained networked systems subject to data losses,” Automatica, vol. 54, pp. 272–278, 2015. doi: 10.1016/j.automatica.2015.02.018
    [27]
    Z. Ji, H. Lin, and H. Yu, “Leaders in multi-agent controllability under consensus algorithm and tree topology,” Systems &Control Letters, vol. 61, pp. 918–925, 2012.
    [28]
    Z. Zhang and M.-Y. Chow, “Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid,” IEEE Trans. Power Systems, vol. 27, no. 4, pp. 1761–1768, 2012. doi: 10.1109/TPWRS.2012.2188912
    [29]
    D. Angeli, A. Casavola, G. Franzè, and E. Mosca, “An ellipsoidal off-line MPC scheme for uncertain polytopic discrete-time systems,” Automatica, vol. 44, pp. 3113–3119, 2008. doi: 10.1016/j.automatica.2008.04.027
    [30]
    A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic regulator for constrained systems,” Automatica, vol. 38, pp. 3–20, 2002. doi: 10.1016/S0005-1098(01)00174-1
    [31]
    P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in networked control systems”, in Proc. IEEE, vol. 95, No. 1 pp.138–162, 2007.
    [32]
    G. Franzè, W. Lucia, and F. Tedesco, “A distributed model predictive control scheme for leader-follower multi-agent systems,” Int. J. Control, vol. 63, no. 8, pp. 2558–2565, 2018.
    [33]
    C. Peng, J. Li, and M. Fei, “Resilient event-triggering H load frequency control for multi-area power systems with energy-limited DoS attacks,” IEEE Trans. Power Systems, vol. 32, no. 5, pp. 411–4118, 2016.
    [34]
    A. Casavola, D. Famularo, G. Franzè, and F. Tedesco, “A distributed constrained model predictive control scheme for networked leaderfollower formations”, in Proc. IEEE ACC, Boston, USA, pp. 3346–3351, 2016.
    [35]
    G. Franzè, F. Tedesco, and A. Casavola, “A leader-follower architecture for load frequency control purposes against cyber attacks in power grids-Part I”, in Proc. IEEE CDC, Las Vegas, USA, pp. 5128–5133, 2016.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (1964) PDF downloads(182) Cited by()

    Highlights

    • A predictive control for networked MASs subject to cyber attacks is developed.
    • a dynamical Leader-Follower paradigm is used to face adversities affecting the leader.
    • the LF paradigm avoids iterative information exchange and attack detection procedures.
    • the needed computational resources (CPUs speed, memory, and bandwidth) are modest.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return