IEEE/CAA Journal of Automatica Sinica
Citation: | Tongle Zhou, Mou Chen and Jie Zou, "Reinforcement Learning Based Data Fusion Method for Multi-Sensors," IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1489-1497, Nov. 2020. doi: 10.1109/JAS.2020.1003180 |
[1] |
D. Hall and J. Llinas, “An introduction to multisensor data fusion,” in Proc. IEEE Int. Symposium on Circuits and Systems, Monterey, USA: IEEE, 1998, vol.6, pp. 537–540.
|
[2] |
T. L. Zhou, M. Chen, Y. H. Wang, J. L. He, and C. G. Yang, “Information entropybased intention prediction of aerial targets under uncertain and incomplete information,” Entropy, vol. 22, no. 3, pp. 279, Feb. 2020. doi: 10.3390/e22030279
|
[3] |
D. Nada, M. Bousbia-Salah, and M. Bettayeb, “Multi-sensor data fusion for wheelchair position estimation with unscented Kalman filter,” Int. J. Autom. and Computing, vol. 15, no. 2, pp. 207–217, Apr. 2018.
|
[4] |
X. S. Yang, W. A. Zhang, M. Z. Q. Chen, and L. Yu, “Hybrid sequential fusion estimation for asynchronous sensor eetwork-based target tracking,” IEEE Trans. Control Systems Technology, vol. 25, no. 2, pp. 669–676, May 2017. doi: 10.1109/TCST.2016.2558632
|
[5] |
W. S. Zhang and W. Z. Wan, “Research and application of data fusion technology in smart manager and control platform in sub-station,” Electrical Engineering, vol. 15, no. 2, pp. 48–52, Feb. 2014.
|
[6] |
C. Garcia, R. Omar, and O. Aycard, “Multiple sensor fusion and classification for moving object detection and tracking,” IEEE Trans. Intelligent Transportation Systems, vol. 17, no. 2, pp. 1–10, Sept. 2015.
|
[7] |
F. Y. Xiao, “Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy,” Information Fusion, vol. 46, no. 1, pp. 23–32, Apr. 2018.
|
[8] |
T. L. Zhou, M. Chen, and J. Zou. “Data fusion of air combat based on reinforcement learning,” in Proc. 4th IEEE Int. Conf. Advanced Robotics and Mechatronics, Osaka, Japan: IEEE, 2019, pp.492–497.
|
[9] |
R. S. Sutton, A. G. Barto. Reinforcement Learning, Cambridge, MA, USA: MIT Press, 2017.
|
[10] |
A. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement learning framework for autonomous driving,” Electronic Imaging, vol. 1, no. 19, pp. 70–76, Jan. 2017.
|
[11] |
Z. J. Li, B. Huang, A. Ajoudani, C. G. Yang, C. Y. Su, and A. Bicchi, “Asymmetric bimanual control of dual-arm exoskeletons for human-cooperative manipulations,” IEEE Trans. Robotics, vol. 34, no. 1, pp. 264–271, Nov. 2017.
|
[12] |
Z. J. Li, B. Huang, Z. F. Ye, M. D. Deng, and C. G. Yang, “Physical human-robot interaction of a robotic exoskeleton by admittance control,” IEEE Trans. Industrial Electronics, vol. 65, no. 1, pp. 9614–9624, Mar. 2018.
|
[13] |
H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin, “Deep reinforcement learning for mobile edge caching: Review, new features, and open issues,” IEEE Network, vol. 32, no. 6, pp. 50–57, Nov. 2018. doi: 10.1109/MNET.2018.1800109
|
[14] |
Z. J. Li, C. J. Deng, and K. K. Zhao, “Human cooperative control of a wearable walking exoskeleton for enhancing climbing stair activities,” IEEE Trans. Industrial Electronics, vol. 67, no. 4, pp. 3086–3095, May 2019.
|
[15] |
Z. J. Li, J. J. Li, S. N. Zhao, Y. X. Yuan, Y. Kang, and C. L. P. Chen, “Adaptive neural control of a kinematically redundant exoskeleton robot using brain-machine interfaces,” IEEE Trans. Neural Networks and Learning Systems, vol. 30, no. 22, pp. 3558–3571, Oct. 2019.
|
[16] |
T. T. Gao, Y. J. Liu, L. Liu, and D. P. Li, “Adaptive neural network-based control for a class of nonlinear pure-feedback systems with time-varying full state constraints,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 5, pp. 41–51, May 2018.
|
[17] |
Y. Li, R. X. Cui, Z. J. Li, and D. M. Xu, “Neural network approximation based nearoptimal motion planning with kinodynamic constraints using RRT,” IEEE Trans. Industrial Electronics, vol. 65, no. 11, pp. 8718–8729, Mar. 2018. doi: 10.1109/TIE.2018.2816000
|
[18] |
L. Liu, Y. J. Liu, and S. C. Tong, “Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems,” IEEE Trans. Cybernetics, vol. 49, no. 7, pp. 2536–2545, May 2018.
|
[19] |
H. Xiao, R. X. Cui, and D. M. Xu, “A sampling-based Bayesian approach for cooperative multiagent online search with Resource constraints,” IEEE Trans. Cybernetics, vol. 48, no. 6, pp. 1773–1785, May 2018. doi: 10.1109/TCYB.2017.2715228
|
[20] |
D. P. Li, Y. J. Liu, S. C. Tong, C. L. P. Chen, and D. J. Li, “Neural networks-based adaptive control for nonlinear state constrained systems with input delay,” IEEE Trans. Cybernetics, vol. 49, no. 4, pp. 1249–1258, Feb. 2018.
|
[21] |
B. J. Lascara, J. W. Carson, and D. N. Edwards. “A study of primary surveillance radar traffic and its utility via ADS-B uplink,” in Proc. Integrated Communications, Navigation and Surveillance Conf. (ICNS) IEEE, pp.1–11, Jun. 2013.
|
[22] |
K. Liang, Q. Pan, G. M. Song, X. G. Zhang, and Z. L. Zhang, “The study of multi-sensor time registration method based on curve fitting,” J. Shaanxi University of Science and Technology, vol. 6, no. 24, pp. 111–114, Dec. 2006.
|
[23] |
C. Y. Deng and H. W. Lin, “Progressive and iterative approximation for least squares B-spline curve and surface fitting,” Computer-Aided Design, vol. 47, no. 1, pp. 32–44, Feb. 2014.
|
[24] |
J. Chen and G. J. Wang, “Progressive-iterative approximation for triangular bezier surfaces,” Computer-Aided Design, vol. 43, no. 8, pp. 889–895, Dec. 2011. doi: 10.1016/j.cad.2011.03.012
|
[25] |
Y. Kineri, M. Morioka, and T. Maekawa, “Point-tangent/point-normal Bspline curve interpolation/approximation algorithms,” Computer-Aided Design, vol. 44, no. 7, pp. 697–708, Jun. 2012. doi: 10.1016/j.cad.2012.02.011
|
[26] |
H. P. Liu, F. C. Sun, and X. Y. hang, “Robotic material perception using active multi-modal fusion,” IEEE Trans. Industrial Electronics, vol. 9, no. 9, pp. 1–9, Nov. 2018.
|
[27] |
L. Li, Y. S. Lv, and F.-Y. Wang, “Traffic signal timing via deep reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 3, pp. 247–254, Jul. 2016. doi: 10.1109/JAS.2016.7508798
|
[28] |
A. Xi, T. W. Mudiyanselage, D. C. Tao, and C. Chen, “Balance control of a biped robot on a rotating platform based on efficient reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 938–951, Jul. 2019. doi: 10.1109/JAS.2019.1911567
|
[29] |
T. L. Zhou, M. Chen, C. G. Yang, and Z. Q. Nie, “Data fusion using Bayesian theory and reinforcement learning method,” Science China Information Sciences, vol. 63, no.7, DOI: 10.1007/s11432-019-2751-4, 2020.
|
[30] |
S. M. Chen, X. L. Chen, Z. K. Pei, X. X. Zhang, and H. J. Fang, “Distributed filtering algorithm based on tunable weights under untrustworthy dynamics,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 225–232, Apr. 2016. doi: 10.1109/JAS.2016.7451110
|
[31] |
J. J. Rissanen, “Fisher information and stochastic complexity,” IEEE Trans. Information Theory, vol. 42, no. 1, pp. 40–47, Jun. 1996. doi: 10.1109/18.481776
|
[32] |
S. P. Wan, “Method of fusion for multi-sensor data based on fisher information,” Chinese J. Sensors and Actuators, vol. 21, no. 12, pp. 2035–2038, Dec. 2008.
|