IEEE/CAA Journal of Automatica Sinica
Citation: | Tong Yang, Ning Sun, He Chen and Yongchun Fang, "Swing Suppression and Accurate Positioning Control for Underactuated Offshore Crane Systems Suffering From Disturbances," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 892-900, May 2020. doi: 10.1109/JAS.2020.1003162 |
[1] |
W. Sun, S. F. Su, J. W. Xia, and Y. Q. Wu, “Adaptive tracking control of wheeled inverted pendulums with periodic disturbances,” IEEE Trans. Cybernetics, Dec. 2018. DOI: 10.1109/TCYB.2018.2884707.
|
[2] |
S. Q. Li, J. Li, and Y. P. Mo, “Piezoelectric multimode vibration control for stiffened plate using ADRC-based acceleration compensation,” IEEE Trans. Industrial Electronics, vol. 61, no. 12, pp. 6892–6902, 2014. doi: 10.1109/TIE.2014.2317141
|
[3] |
W. Sun, S. F. Su, J. W. Xia, and V. T. Nguyen, “Adaptive fuzzy tracking control of flexible-joint robots with full-state constraints,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 49, no. 11, pp. 2201–2209, 2019.
|
[4] |
C. G. Yang, G. Z. Peng, Y. Li, R. X. Cui, L. Cheng, and Z. J. Li, “Neural networks enhanced adaptive admittance control of optimized robot-environment interaction,” IEEE Trans. Cybernetics, vol. 49, no. 7, pp. 2568–2579, 2019. doi: 10.1109/TCYB.2018.2828654
|
[5] |
D. W. Qian, H. Ding, S. G. Lee, and H. S. Bae, “Suppression of chaotic behaviors in a complex biological system by disturbance observerbased derivative-integral terminal sliding mode,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 126–135, 2020.
|
[6] |
L. Cheng, Y. Liu, Z. G. Hou, M. H. Tan, D. J. Du, and M. R. Fei, “A rapid spiking neural network approach with an application on hand gesture recognition,” IEEE Trans. Cognitive and Developmental Systems, May 2019. DOI: 10.1109/TCDS.2019.2918228.
|
[7] |
K. F. Lu and Y. Q. Xia, “Adaptive attitude tracking control for rigid spacecraft with finite-time convergence,” Automatica, vol. 49, no. 12, pp. 3591–3599, 2013. doi: 10.1016/j.automatica.2013.09.001
|
[8] |
H. Y. Li, S. Y. Zhao, W. He, and R. Q. Lu, “Adaptive finite-time tracking control of full states constrained nonlinear systems with dead-zone,” Automatica, vol. 100, pp. 99–107, 2019. doi: 10.1016/j.automatica.2018.10.030
|
[9] |
Z. J. Li, Z. T. Chen, J. Fu, and C. Y. Sun, “Direct adaptive controller for uncertain MIMO dynamic systems with time-varying delay and deadzone inputs,” Automatica, vol. 63, pp. 287–291, 2016. doi: 10.1016/j.automatica.2015.10.036
|
[10] |
Q. Zhou, S. Y. Zhao, H. Y. Li, R. Q. Lu, and C. W. Wu, “Adaptive neural network tracking control for robotic manipulators with dead-zone,” IEEE Trans. Neural Networks and Learning Systems, vol. 30, no. 12, pp. 3611–3620, 2019.
|
[11] |
S. X. Hou, J. T. Fei, C. Chen, and Y. D. Chu, “Finite-time adaptive fuzzy-neuralnetwork control of active power filter,” IEEE Trans. Power Electronics, vol. 34, no. 10, pp. 10298–10313, 2019. doi: 10.1109/TPEL.2019.2893618
|
[12] |
Y. G. Sun, J. Q. Xu, H. Y. Qiang, and G. B. Lin, “Adaptive neural-fuzzy robust position control scheme for Maglev train systems with experimental verification,” IEEE Trans. Industrial Electronics, vol. 66, no. 11, pp. 8589–8599, 2019. doi: 10.1109/TIE.2019.2891409
|
[13] |
Y. C. Ouyang, L. Dong, L. Xue, and C. Y. Sun, “Adaptive control based on neural networks for an uncertain 2-DOF helicopter system with input deadzone and output constraints,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 807–815, 2019. doi: 10.1109/JAS.2019.1911495
|
[14] |
A. C. Zhang, X. Z. Lai, M. Wu, and J. H. She, “Nonlinear stabilizing control for a class of underactuated mechanical systems with multi degree of freedoms,” Nonlinear Dynamics, vol. 89, no. 3, pp. 2241–2253, 2017. doi: 10.1007/s11071-017-3582-2
|
[15] |
B. Xian and W. Hao, “Nonlinear robust fault-tolerant control of the tilt trirotor UAV under rear servo’s stuck fault: theory and experiments,” IEEE Trans. Industrial Informatics, vol. 15, no. 4, pp. 2158–2166, 2019.
|
[16] |
J. J. Wang and T. Kumbasar, “Optimal PID control of spatial inverted pendulum with big bang-big crunch optimization,” IEEE/CAA J. Autom. Sinica, Dec. 2018. DOI: 10.1109/JAS.2018.7511267.
|
[17] |
X. Xin, “Linear strong structural controllability and observability of an n-link underactuated revolute planar robot with active intermediate joint or joints,” Automatica, vol. 94, pp. 436–442, 2018. doi: 10.1016/j.automatica.2018.04.050
|
[18] |
K. Huang, K. Shao, S. Zhen, H. Sun, and R. Yu, “A novel approach for trajectory tracking control of an under-actuated quad-rotor UAV,” IEEE/CAA J. Autom. Sinica, Dec. 2016, DOI: 10.1109/JAS.2016.7510238.
|
[19] |
H. M. Ouyang, J. X. Hu, G. M. Zhang, L. Mei, and X. Deng, “Decoupled linear model and S-shaped curve motion trajectory for load sway reduction control in overhead cranes with double-pendulum effect,” Proc. Institution of Mechanical Engineers,Part C:J. Mechanical Engineering Science, vol. 233, no. 10, pp. 3678–3689, 2019. doi: 10.1177/0954406218819029
|
[20] |
D. Wang, H. B. He, and D. R. Liu, “Intelligent optimal control with critic learning for a nonlinear overhead crane system,” IEEE Trans. Industrial Informatics, vol. 14, no. 7, pp. 2932–2940, 2018. doi: 10.1109/TII.2017.2771256
|
[21] |
J. Huang, X. M. Xie, and Z. Liang, “Control of bridge cranes with distributed-mass payload dynamics,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 1, pp. 481–486, 2015. doi: 10.1109/TMECH.2014.2311825
|
[22] |
Z. C. Zhang, Y. Q. Wu, and J. M. Huang, “Differential-flatness-based finitetime anti-swing control of underactuated crane systems,” Nonlinear Dynamics, vol. 87, no. 3, pp. 1749–1761, 2017. doi: 10.1007/s11071-016-3149-7
|
[23] |
N. Sun, Y. M. Wu, H. Chen, and Y. C. Fang, “Antiswing cargo transportation of underactuated tower crane systems by a nonlinear controller embedded with an integral term,” IEEE Trans. Autom. Science and Engineering, vol. 16, no. 3, pp. 1387–1398, 2019. doi: 10.1109/TASE.2018.2889434
|
[24] |
D. W. Qian, S. W. Tong, and S. G. Lee, “Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes,” Autom. in Construction, vol. 65, pp. 133–143, 2016. doi: 10.1016/j.autcon.2015.12.014
|
[25] |
M. H. Zhang, X. Ma, R. Song, X. W. Rong, G. H. Tian, X. C. Tian, and Y. B. Li, “Adaptive proportional-derivative sliding mode control law with improved transient performance for underactuated overhead crane systems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 683–690, 2018. doi: 10.1109/JAS.2018.7511072
|
[26] |
H. Chen and N. Sun, “Nonlinear control of underactuated systems subject to both actuated and unactuated state constraints with experimental verification,” IEEE Trans. Industrial Electronics, Oct. 2019, DOI: 10.1109/TIE.2019.2946541.
|
[27] |
W. He, S. Zhang, and S. S. Ge, “Adaptive control of a flexible crane system with the boundary output constraint,” IEEE Trans. Industrial Electronics, vol. 61, no. 8, pp. 4126–4133, 2014. doi: 10.1109/TIE.2013.2288200
|
[28] |
N. Sun, Y. Fu, T. Yang, J. Y. Zhang, Y. C. Fang, and X. Xin, “Nonlinear motion control of complicated dual rotary crane systems without velocity feedback: design, analysis, and hardware experiments,” IEEE Trans. Autom. Science and Engineering, Jan. 2020, DOI: 10.1109/TASE.2019.2961258.
|
[29] |
R. J. Liu, S. H. Li, and S. H. Ding, “Nested saturation control for overhead crane systems,” Trans. Institute of Measurement and Control, vol. 34, no. 7, pp. 862–875, 2012. doi: 10.1177/0142331211423285
|
[30] |
L.-H. Lee, C.-H. Huang, S.-C. Ku, Z.-H. Yang, and C.-Y. Chang, “Efficient visual feedback method to control a three-dimensional overhead crane,” IEEE Trans. Industrial Electronics, vol. 61, no. 8, pp. 4073–4083, 2014. doi: 10.1109/TIE.2013.2286565
|
[31] |
N. Sun, T. Yang, H. Chen, Y. C. Fang, and Y. Z. Qian, “Adaptive antiswing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 49, no. 7, pp. 1309–1321, 2019. doi: 10.1109/TSMC.2017.2765183
|
[32] |
Z. R. Ren, R. Skjetne, and Z. Gao, “Modeling and control of crane overload protection during marine lifting operation based on model predictive control,” in Proc. ASME Int. Conf. on Ocean, Offshore and Arctic Engineering, Trondheim, Norway, Jun. 2017, pp. V009T12A027.
|
[33] |
N. Sun, Y. C. Fang, H. Chen, Y. M. Fu, and B. Lu, “Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements: design, analysis, and experiments,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 48, no. 10, pp. 1781–1793, 2018. doi: 10.1109/TSMC.2017.2700393
|
[34] |
L. A. Tuan, S.-G. Lee, L. C. Nho, and H. M. Cuong, “Robust controls for shipmounted container cranes with viscoelastic foundation and flexible hoisting cable,” Proc. of the Institution of Mechanical Engineers,Part I:J. Systems and Control Engineering, vol. 229, no. 7, pp. 662–674, 2015.
|
[35] |
S. Küchler, T. Mahl, J. Neupert, K. Schneider, and O. Sawodny, “Active control for an offshore crane using prediction of the vessel’s motion,” IEEE/ASME Trans. Mechatronics, vol. 16, no. 2, pp. 297–309, 2011. doi: 10.1109/TMECH.2010.2041933
|
[36] |
S. Messineo and A. Serrani, “Offshore crane control based on adaptive external models,” Automatica, vol. 45, no. 11, pp. 2546–2556, 2009. doi: 10.1016/j.automatica.2009.07.032
|
[37] |
S. G. Liu, Q. Guo, and W. P. Zhao, “Research on active heave compensation for offshore crane,” in Proc. 26th Chinese Control and Decision Conf., Changsha, China, June 2014, pp. 1768–1772.
|
[38] |
R. M. T. Raja Ismail, N. D. That, and Q. P. Ha, “Modelling and robust trajectory following for offshore container crane systems,” Automation in Construction, vol. 59, pp. 179–187, 2015. doi: 10.1016/j.autcon.2015.05.003
|
[39] |
Q. H. Ngo, N. P. Nguyen, C. N. Nguyen, T. H. Tran, and Q. P. Ha, “Fuzzy sliding mode control of an offshore container crane,” Ocean Engineering, vol. 140, pp. 125–134, 2017. doi: 10.1016/j.oceaneng.2017.05.019
|
[40] |
Y. C. Fang, P. C. Wang, N. Sun, and Y. C. Zhang, “Dynamics analysis and nonlinear control of an offshore boom crane,” IEEE Trans. Industrial Electronics, vol. 61, no. 1, pp. 414–427, 2014. doi: 10.1109/TIE.2013.2251731
|
[41] |
X. G. Li, Z. Q. Mei, D. L. Zhu, and B. C. Xie, “Modeling and anti-sway control of ship-mounted crane,” Advances in Mechanical Engineering, vol. 9, no. 9, pp. 1–9, 2017.
|
[42] |
D. Newman and J. Vaughan, “Reduction of transient payload swing in a harmonically excited boom crane by shaping luff commands,” in Proc. ASME Dynamic Systems and Control Conf., Tysons, Virginia, USA, Oct. 2017, pp. V002T23A004.
|
[43] |
F. Sanfilippo, L. I. Hatledal, K. Y. Pettersen, and H. X. Zhang, “A benchmarking framework for control methods of maritime cranes based on the functional mockup interface,” IEEE J. Oceanic Engineering, vol. 43, no. 2, pp. 468–483, 2018.
|
[44] |
R. Olfati-Saber, “Normal forms for underactuated mechanical systems with symmetry,” IEEE Trans. Autom. Control, vol. 47, no. 2, pp. 305–308, 2002. doi: 10.1109/9.983365
|
[45] |
R. Xu and Ü. Özgüner, “Sliding mode control of a class of underactuated systems,” Automatica, vol. 44, no. 1, pp. 233–241, 2008. doi: 10.1016/j.automatica.2007.05.014
|
[46] |
J. Huang, S. Ri, T. Fukuda, and Y. J. Wang, “A disturbance observer based sliding mode control for a class of underactuated robotic system with mismatched uncertainties,” IEEE Trans. Autom. Control, vol. 64, no. 6, pp. 2480–2487, 2018.
|