A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 3
Apr.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Jipeng Wang, Hesuan Hu, Chunrong Pan, Yuan Zhou and Liang Li, "Scheduling Dual-Arm Cluster Tools With Multiple Wafer Types and Residency Time Constraints," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 776-789, May 2020. doi: 10.1109/JAS.2020.1003150
Citation: Jipeng Wang, Hesuan Hu, Chunrong Pan, Yuan Zhou and Liang Li, "Scheduling Dual-Arm Cluster Tools With Multiple Wafer Types and Residency Time Constraints," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 776-789, May 2020. doi: 10.1109/JAS.2020.1003150

Scheduling Dual-Arm Cluster Tools With Multiple Wafer Types and Residency Time Constraints

doi: 10.1109/JAS.2020.1003150
Funds:  This work was supported in part by the National Natural Science Foundation of China (71361014, 61973242, 61573265, 51665018) and the Major Fundamental Research Program of the Natural Science Foundation of Shaanxi Province (2017ZDJC-34)
More Information
  • Accompanying the unceasing progress of integrated circuit manufacturing technology, the mainstream production mode of current semiconductor wafer fabrication is featured with multi-variety, small batch, and individual customization, which poses a huge challenge to the scheduling of cluster tools with single-wafer-type fabrication. Concurrent processing multiple wafer types in cluster tools, as a novel production pattern, has drawn increasing attention from industry to academia, whereas the corresponding research remains insufficient. This paper investigates the scheduling problems of dual-arm cluster tools with multiple wafer types and residency time constraints. To pursue an easy-to-implement cyclic operation under diverse flow patterns, we develop a novel robot activity strategy called multiplex swap sequence. In the light of the virtual module technology, the workloads that stem from bottleneck process steps and asymmetrical process configuration are balanced satisfactorily. Moreover, several sufficient and necessary conditions with closed-form expressions are obtained for checking the system’s schedulability. Finally, efficient algorithms with polynomial complexity are developed to find the periodic scheduling, and its practicability and availability are demonstrated by the offered illustrative examples.

     

  • loading
  • [1]
    T.-S. Yu and T.-E. Lee, “Scheduling dual-armed cluster tools with chamber cleaning operations,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 1, pp. 218–228, Jan. 2019. doi: 10.1109/TASE.2017.2764105
    [2]
    S. W. Ding, J. G. Yi, and M. T. Zhang, “Multicluster tools scheduling: an integrated event graph and network model approach,” IEEE Trans. Semicond. Manuf., vol. 19, no. 3, pp. 339–351, Aug. 2006. doi: 10.1109/TSM.2006.879414
    [3]
    J. G. Yi, S. W. Ding, D. Z. Song, and M. T. Zhang, “Steady-state throughput and scheduling analysis of multi-cluster tools: a decomposition approach,” IEEE Trans. Autom. Sci. Eng., vol. 5, no. 2, pp. 321–336, Apr. 2008. doi: 10.1109/TASE.2007.906678
    [4]
    H.-J. Kim, J.-H. Lee, S. Baik, and T.-E. Lee, “Scheduling in-line multiple cluster tools,” IEEE Trans. Semicond. Manuf, vol. 28, no. 2, pp. 171–179, May 2015. doi: 10.1109/TSM.2015.2415523
    [5]
    L. Mönch, J. W. Fowler, S. Dauzère-Pérès, S. J. Mason, and O. Rose, “A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations,” J. Sched., vol. 14, no. 6, pp. 583–599, Dec. 2011. doi: 10.1007/s10951-010-0222-9
    [6]
    S. Venkatesh, R. Davenport, P. Foxhoven, and J. Nulman, “A steady state throughput analysis of cluster tools: dual-blade versus single-blade robots,” IEEE Trans. Semicond. Manuf., vol. 10, no. 4, pp. 418–424, Nov. 1997. doi: 10.1109/66.641483
    [7]
    R. S. Srinivasan, “Modeling and performance analysis of cluster tools using Petri nets,” IEEE Trans. Semicond. Manuf., vol. 11, no. 3, pp. 394–403, Aug. 1998. doi: 10.1109/66.705374
    [8]
    Y.-H. Shin, T.-E. Lee, J.-H. Kim, and H.-Y. Lee, “Modeling and implementing a real-time scheduler for dual-armed cluster tools,” Comput. Ind., vol. 45, no. 1, pp. 13–27, May 2001. doi: 10.1016/S0166-3615(01)00078-1
    [9]
    W. M. Zuberek, “Timed Petri nets in modeling and analysis of cluster tools,” IEEE Robot. Autom. Mag., vol. 17, no. 5, pp. 562–575, Oct. 2001. doi: 10.1109/70.964658
    [10]
    S. Rostami, B. Hamidzadeh, and D. Camporese, “An optimal periodic scheduler for dual-arm robots in cluster tools with residency constraints,” IEEE Trans. Robot. Autom., vol. 17, no. 5, pp. 609–618, Oct. 2001. doi: 10.1109/70.964662
    [11]
    J.-H. Kim, T.-E. Lee, H.-Y. Lee, and D.-B. Park, “Scheduling analysis of time-constrained dual-armed cluster tools,” IEEE Trans. Semicond. Manuf., vol. 16, no. 3, pp. 521–534, Aug. 2003. doi: 10.1109/TSM.2003.815203
    [12]
    T.-E. Lee and S.-H. Park, “An extended event graph with negative places and tokens for time window constraints,” IEEE Trans. Autom. Sci. Eng., vol. 2, no. 4, pp. 319–332, Oct. 2005. doi: 10.1109/TASE.2005.851236
    [13]
    N. Q. Wu, C. B. Chu, F. Chu, and M. C. Zhou, “A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints,” IEEE Trans. Semicond. Manuf., vol. 21, no. 2, pp. 224–237, May 2008. doi: 10.1109/TSM.2008.2000425
    [14]
    N. Q. Wu and M. C. Zhou, “A closed-form solution for schedulability and optimal scheduling of dual-arm cluster tools with wafer residency time constraint based on steady schedule analysis,” IEEE Trans. Autom. Sci. Eng., vol. 7, no. 2, pp. 303–315, Apr. 2010. doi: 10.1109/TASE.2008.2008633
    [15]
    U. Wikborg and T.-E. Lee, “Noncyclic scheduling for timed discreteevent systems with application to single-armed cluster tools using Pareto-optimal optimization,” IEEE Trans. Autom. Sci. Eng., vol. 10, no. 3, pp. 699–710, Jul. 2013. doi: 10.1109/TASE.2012.2217128
    [16]
    J.-H. Kim and T.-E. Lee, “Schedulability analysis of timed-constrained cluster tools with bounded time variation by an extended Petri net,” IEEE Trans. Autom. Sci. Eng., vol. 5, no. 3, pp. 490–503, Jul. 2008. doi: 10.1109/TASE.2007.912716
    [17]
    Y. Qiao, N. Q. Wu, and M. C. Zhou, “Real-time scheduling of single-arm cluster tools subject to residency time constraints and bounded activity time variation,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 3, pp. 564–577, Jul. 2012. doi: 10.1109/TASE.2012.2192476
    [18]
    N. Q. Wu and M. C. Zhou, “Schedulability analysis and optimal scheduling of dual-arm cluster tools with residency time constraint and activity time variation,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 1, pp. 203–209, Jan. 2012. doi: 10.1109/TASE.2011.2160452
    [19]
    C. R. Pan, Y. Qiao, N. Q. Wu, and M. C. Zhou, “A novel algorithm for wafer sojourn time analysis of single-arm cluster tools with wafer residency time constraints and activity time variation,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 45, no. 5, pp. 805–818, May 2015. doi: 10.1109/TSMC.2014.2368995
    [20]
    H.-J. Kim, J.-H. Lee, and T.-E. Lee, “Schedulability analysis for noncyclic operation of time-constrained cluster tools with time variation,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 3, pp. 1409–1414, Jul. 2016. doi: 10.1109/TASE.2016.2531105
    [21]
    H.-Y. Lee and T.-E. Lee, “Scheduling single-arm cluster tools with reentrant wafer flows,” IEEE Trans. Semicond. Manuf., vol. 19, no. 2, pp. 226–240, May 2006. doi: 10.1109/TSM.2006.873402
    [22]
    N. Q. Wu, F. Chu, C. B. Chu, and M. C. Zhou, “Petri net-based scheduling of single-arm cluster tools with reentrant atomic layer deposition processes,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 1, pp. 42–55, Jan. 2011. doi: 10.1109/TASE.2010.2046736
    [23]
    N. Q. Wu, M. C. Zhou, F. Chu, and C. B. Chu, “A Petri-net-based scheduling strategy for dual-arm cluster tools with wafer revisiting,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 43, no. 5, pp. 1182–1194, Sep. 2013. doi: 10.1109/TSMCA.2012.2230440
    [24]
    Y. Qiao, N. Q. Wu, and M. C. Zhou, “Scheduling of dual-arm cluster tools with wafer revisiting and residency time constraints,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 286–300, Feb. 2014. doi: 10.1109/TII.2013.2272702
    [25]
    Y. Qiao, N. Q. Wu, and M. C. Zhou, “Schedulability and scheduling analysis of dual-arm cluster tools with wafer revisiting and residency time constraints based on a novel schedule,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 45, no. 3, pp. 472–484, Mar. 2015. doi: 10.1109/TSMC.2014.2347928
    [26]
    F. J. Yang, N. Q. Wu, Y. Qiao, M. C. Zhou, and Z. W. Li, “Scheduling of single-arm cluster tools for an atomic layer deposition process with residency time constraints,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 47, no. 3, pp. 502–516, Mar. 2017. doi: 10.1109/TSMC.2014.2318679
    [27]
    Y. Qiao, N. Q. Wu, F. J. Yang, M. C. Zhou, Q. H. Zhu, and T. Qu, “Robust scheduling of time-constrained dual-arm cluster tools with wafer revisiting and activity time disturbance,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 49, no. 6, pp. 1228–1240, Jun. 2019. doi: 10.1109/TSMC.2017.2721979
    [28]
    Y. Qiao, N. Q. Wu, C. R. Pan, and M. C. Zhou, “How to respond to process module failure in residency time-constrained single-arm cluster tools,” IEEE Trans. Semicond. Manuf., vol. 27, no. 4, pp. 462–474, Nov. 2014. doi: 10.1109/TSM.2014.2340858
    [29]
    Y. Qiao, C. R. Pan, N. Q. Wu, and M. C. Zhou, “Response policies to process module failure in single-arm cluster tools subject to wafer residency time constraints,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 1125–1139, Jul. 2015. doi: 10.1109/TASE.2014.2312823
    [30]
    H. Kim, H.-J. Kim, J.-H. Lee, and T.-E. Lee, “Scheduling dual-armed cluster tools with cleaning processes,” Int. J. Prod. Res., vol. 51, no. 12, pp. 3671–3687, Dec. 2013. doi: 10.1080/00207543.2012.758392
    [31]
    T.-S. Yu, H.-J. Kim, and T.-E. Lee, “Scheduling single-armed cluster tools with chamber cleaning operations,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 705–716, Apr. 2018. doi: 10.1109/TASE.2017.2682271
    [32]
    F. J. Yang, N. Q. Wu, K. Z. Gao, C. J. Zhang, Y. T. Zhu, R. Su, and Y. Qiao, “Efficient approach to cyclic scheduling of single-arm cluster tools with chamber cleaning operations and wafer residency time constraint,” IEEE Trans. Semicond. Manuf., vol. 31, no. 2, pp. 196–205, May 2018. doi: 10.1109/TSM.2018.2811125
    [33]
    W. K. V. Chan, S. W. Ding, J. G. Yi, and D. Z. Song, “Optimal scheduling of multicluster tools with constant robot moving times, Part II: tree-like topology configurations,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 1, pp. 17–28, Jan. 2011. doi: 10.1109/TASE.2010.2046893
    [34]
    Q. H. Zhu, N. Q. Wu, Y. Qiao, and M. C. Zhou, “Petri net-based optimal one-wafer scheduling of single-arm multi-cluster tools in semiconductor manufacturing,” IEEE Trans. Semicond. Manuf., vol. 26, no. 4, pp. 578–591, Nov. 2013. doi: 10.1109/TSM.2013.2278378
    [35]
    F. J. Yang, N. Q. Wu, Y. Qiao, and M. C. Zhou, “Petri net-based polynomially complex approach to optimal one-wafer cyclic scheduling of hybrid multi-cluster tools in semiconductor manufacturing,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 44, no. 12, pp. 1598–1610, Dec. 2014. doi: 10.1109/TSMC.2015.2507140
    [36]
    Q. H. Zhu, N. Q. Wu, Y. Qiao, and M. C. Zhou, “Scheduling of single-arm multi-cluster tools with wafer residency time constraints in semiconductor manufacturing,” IEEE Trans. Semicond. Manuf., vol. 28, no. 1, pp. 117–125, Feb. 2015. doi: 10.1109/TSM.2014.2375880
    [37]
    L. P. Bai, N. Q. Wu, Z. W. Li, and M. C. Zhou, “Optimal one-wafer cyclic scheduling and buffer space configuration for single-arm multicluster tools with linear topology,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 46, no. 10, pp. 1456–1467, Oct. 2016. doi: 10.1109/TSMC.2015.2501232
    [38]
    F. J. Yang, N. Q. Wu, Y. Qiao, and M. C. Zhou, “Optimal one-wafer cyclic scheduling of time-constrained hybrid multicluster tools via Petri nets,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 47, no. 11, pp. 2920–2932, Nov. 2017. doi: 10.1109/TSMC.2016.2531697
    [39]
    F. J. Yang, N. Q. Wu, Y. Qiao, and R. Su, “Polynomial approach to optimal one-wafer cyclic scheduling of treelike hybrid multi-cluster tools via Petri nets,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 270–280, Jan. 2018.
    [40]
    F. J. Yang, N. Q. Wu, Y. Qiao, and R. Su, “Optimal one-wafer cyclic scheduling of hybrid multirobot cluster tools with tree topology,” IEEE Trans. Syst.,Man,Cybern.,Syst, vol. 48, no. 2, pp. 289–298, Feb. 2018.
    [41]
    T. Nishi, Y. Watanabe, and M. Sakai, “An efficient deadlock prevention policy for noncyclic scheduling of multicluster tools,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 4, pp. 1677–1691, Oct. 2018. doi: 10.1109/TASE.2017.2771751
    [42]
    Q. H. Zhu, Y. Qiao, and N. Q. Wu, “Optimal integrated schedule of entire process of dual-blade multi-cluster tools from start-up to closedown,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 553–565, Mar. 2019. doi: 10.1109/JAS.2019.1911411
    [43]
    C. R. Pan, M. C. Zhou, Y. Qiao, and N. Q. Wu, “Scheduling cluster tools in semiconductor manufacturing: recent advances and challenges,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 586–601, Apr. 2018. doi: 10.1109/TASE.2016.2642997
    [44]
    Y. Lim, T.-S. Yu, and T.-E. Lee, “A new class of sequences without interferences for cluster tools with tight wafer delay constraints,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 1, pp. 392–405, Jan. 2019. doi: 10.1109/TASE.2018.2815157
    [45]
    F. J. Yang, N. Q. Wu, Y. Qiao, M. C. Zhou, R. Su, and T. Qu, “Modeling and optimal cyclic scheduling of time-constrained singlerobot- arm cluster tools via Petri nets and linear programming,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 50, no. 3, pp. 871–883, Mar. 2020.
    [46]
    J. P. Wang, C. R. Pan, H. S. Hu, L. Li, and Y. Zhou, “A cyclic scheduling approach to single-arm cluster tools with multiple wafer types and residency time constraints,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 3, pp. 1373–1386, Jul. 2019. doi: 10.1109/TASE.2018.2878063
    [47]
    J.-H. Lee, H.-J. Kim, and T.-E. Lee, “Scheduling lot switching operations for cluster tools,” IEEE Trans. Semicond. Manuf., vol. 26, no. 4, pp. 592–601, Nov. 2013. doi: 10.1109/TSM.2013.2281083
    [48]
    T.-K. Kim, C. Jung, and T.-E. Lee, “Scheduling start-up and close-down periods of dual-armed cluster tools with wafer delay regulation,” Int. J. Prod. Res., vol. 50, no. 10, pp. 2785–2795, May 2012. doi: 10.1080/00207543.2011.590949
    [49]
    C. R. Pan, Y. Qiao, M. C. Zhou, and N. Q. Wu, “Scheduling and analysis of start-up transient processes for dual-armed cluster tools with wafer revisiting,” IEEE Trans. Semicond. Manuf., vol. 28, no. 2, pp. 160–170, May 2015. doi: 10.1109/TSM.2015.2390644
    [50]
    D.-K. Kim, T.-E. Lee, and H.-J. Kim, “Optimal scheduling of transient cycles for single-armed cluster tools with parallel chambers,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, pp. 1165–1175, Apr. 2016. doi: 10.1109/TASE.2015.2443107
    [51]
    Y. Qiao, M. C. Zhou, N. Q. Wu, and Q. H. Zhu, “Scheduling and control of startup process for single-arm cluster tools with residency time constraints,” IEEE Trans. Control. Syst. Technol., vol. 25, no. 4, pp. 1243–1256, Jul. 2017. doi: 10.1109/TCST.2016.2598762
    [52]
    Q. H. Zhu, M. C. Zhou, Y. Qiao, and N. Q. Wu, “Scheduling transient processes for time-constrained single-arm robotic multi-cluster tools,” IEEE Trans. Semicond. Manuf., vol. 30, no. 3, pp. 261–269, Aug. 2017. doi: 10.1109/TSM.2017.2721970
    [53]
    Q. H. Zhu, M. C. Zhou, Y. Qiao, and N. Q. Wu, “Petri net modeling and scheduling of a close-down process for time-constrained single-arm cluster tools,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 48, no. 3, pp. 389–400, Mar. 2018. doi: 10.1109/TSMC.2016.2598303
    [54]
    J.-H. Lee, H.-J. Kim, and T.-E. Lee, “Scheduling cluster tools for concurrent processing of two wafer types,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 525–536, Apr. 2014. doi: 10.1109/TASE.2013.2296855
    [55]
    J.-H. Lee, H.-J. Kim, and T.-E. Lee, “Scheduling cluster tools for concurrent processing of two wafer types with PM sharing,” Int. J. Prod. Res., vol. 53, no. 19, pp. 6007–6022, Oct. 2015. doi: 10.1080/00207543.2015.1035813
    [56]
    S.-G. Ko, T.-S. Yu, and T.-E. Lee, “Scheduling dual-armed cluster tools for concurrent processing of multiple wafer types with identical job flows,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 3, pp. 1058–1070, Jul. 2019. doi: 10.1109/TASE.2018.2868004

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (1415) PDF downloads(147) Cited by()

    Highlights

    • This paper investigates the scheduling problems of dual-arm cluster tools with multiple wafer types and residency time constraints.
    • To pursue an easy-to-implement cyclic operation under diverse flow patterns, we develop a novel robot operation strategy that reveals effectiveness for the simplicity of its enforcement and the flexibility of tackling with intricate combination of flow patterns.
    • According to the analysis of the distribution characteristic of the natural workload, we derive several necessary and sufficient conditions with closed-form expressions for verifying the system’s schedulability.
    • The methodology presented in this paper can handle diverse complex multi-type wafer flow patterns and complicated constraints, such as WRTCs, parallel PMs, and shared PMs.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return