IEEE/CAA Journal of Automatica Sinica
Citation: | Jipeng Wang, Hesuan Hu, Chunrong Pan, Yuan Zhou and Liang Li, "Scheduling Dual-Arm Cluster Tools With Multiple Wafer Types and Residency Time Constraints," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 776-789, May 2020. doi: 10.1109/JAS.2020.1003150 |
[1] |
T.-S. Yu and T.-E. Lee, “Scheduling dual-armed cluster tools with chamber cleaning operations,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 1, pp. 218–228, Jan. 2019. doi: 10.1109/TASE.2017.2764105
|
[2] |
S. W. Ding, J. G. Yi, and M. T. Zhang, “Multicluster tools scheduling: an integrated event graph and network model approach,” IEEE Trans. Semicond. Manuf., vol. 19, no. 3, pp. 339–351, Aug. 2006. doi: 10.1109/TSM.2006.879414
|
[3] |
J. G. Yi, S. W. Ding, D. Z. Song, and M. T. Zhang, “Steady-state throughput and scheduling analysis of multi-cluster tools: a decomposition approach,” IEEE Trans. Autom. Sci. Eng., vol. 5, no. 2, pp. 321–336, Apr. 2008. doi: 10.1109/TASE.2007.906678
|
[4] |
H.-J. Kim, J.-H. Lee, S. Baik, and T.-E. Lee, “Scheduling in-line multiple cluster tools,” IEEE Trans. Semicond. Manuf, vol. 28, no. 2, pp. 171–179, May 2015. doi: 10.1109/TSM.2015.2415523
|
[5] |
L. Mönch, J. W. Fowler, S. Dauzère-Pérès, S. J. Mason, and O. Rose, “A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations,” J. Sched., vol. 14, no. 6, pp. 583–599, Dec. 2011. doi: 10.1007/s10951-010-0222-9
|
[6] |
S. Venkatesh, R. Davenport, P. Foxhoven, and J. Nulman, “A steady state throughput analysis of cluster tools: dual-blade versus single-blade robots,” IEEE Trans. Semicond. Manuf., vol. 10, no. 4, pp. 418–424, Nov. 1997. doi: 10.1109/66.641483
|
[7] |
R. S. Srinivasan, “Modeling and performance analysis of cluster tools using Petri nets,” IEEE Trans. Semicond. Manuf., vol. 11, no. 3, pp. 394–403, Aug. 1998. doi: 10.1109/66.705374
|
[8] |
Y.-H. Shin, T.-E. Lee, J.-H. Kim, and H.-Y. Lee, “Modeling and implementing a real-time scheduler for dual-armed cluster tools,” Comput. Ind., vol. 45, no. 1, pp. 13–27, May 2001. doi: 10.1016/S0166-3615(01)00078-1
|
[9] |
W. M. Zuberek, “Timed Petri nets in modeling and analysis of cluster tools,” IEEE Robot. Autom. Mag., vol. 17, no. 5, pp. 562–575, Oct. 2001. doi: 10.1109/70.964658
|
[10] |
S. Rostami, B. Hamidzadeh, and D. Camporese, “An optimal periodic scheduler for dual-arm robots in cluster tools with residency constraints,” IEEE Trans. Robot. Autom., vol. 17, no. 5, pp. 609–618, Oct. 2001. doi: 10.1109/70.964662
|
[11] |
J.-H. Kim, T.-E. Lee, H.-Y. Lee, and D.-B. Park, “Scheduling analysis of time-constrained dual-armed cluster tools,” IEEE Trans. Semicond. Manuf., vol. 16, no. 3, pp. 521–534, Aug. 2003. doi: 10.1109/TSM.2003.815203
|
[12] |
T.-E. Lee and S.-H. Park, “An extended event graph with negative places and tokens for time window constraints,” IEEE Trans. Autom. Sci. Eng., vol. 2, no. 4, pp. 319–332, Oct. 2005. doi: 10.1109/TASE.2005.851236
|
[13] |
N. Q. Wu, C. B. Chu, F. Chu, and M. C. Zhou, “A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints,” IEEE Trans. Semicond. Manuf., vol. 21, no. 2, pp. 224–237, May 2008. doi: 10.1109/TSM.2008.2000425
|
[14] |
N. Q. Wu and M. C. Zhou, “A closed-form solution for schedulability and optimal scheduling of dual-arm cluster tools with wafer residency time constraint based on steady schedule analysis,” IEEE Trans. Autom. Sci. Eng., vol. 7, no. 2, pp. 303–315, Apr. 2010. doi: 10.1109/TASE.2008.2008633
|
[15] |
U. Wikborg and T.-E. Lee, “Noncyclic scheduling for timed discreteevent systems with application to single-armed cluster tools using Pareto-optimal optimization,” IEEE Trans. Autom. Sci. Eng., vol. 10, no. 3, pp. 699–710, Jul. 2013. doi: 10.1109/TASE.2012.2217128
|
[16] |
J.-H. Kim and T.-E. Lee, “Schedulability analysis of timed-constrained cluster tools with bounded time variation by an extended Petri net,” IEEE Trans. Autom. Sci. Eng., vol. 5, no. 3, pp. 490–503, Jul. 2008. doi: 10.1109/TASE.2007.912716
|
[17] |
Y. Qiao, N. Q. Wu, and M. C. Zhou, “Real-time scheduling of single-arm cluster tools subject to residency time constraints and bounded activity time variation,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 3, pp. 564–577, Jul. 2012. doi: 10.1109/TASE.2012.2192476
|
[18] |
N. Q. Wu and M. C. Zhou, “Schedulability analysis and optimal scheduling of dual-arm cluster tools with residency time constraint and activity time variation,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 1, pp. 203–209, Jan. 2012. doi: 10.1109/TASE.2011.2160452
|
[19] |
C. R. Pan, Y. Qiao, N. Q. Wu, and M. C. Zhou, “A novel algorithm for wafer sojourn time analysis of single-arm cluster tools with wafer residency time constraints and activity time variation,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 45, no. 5, pp. 805–818, May 2015. doi: 10.1109/TSMC.2014.2368995
|
[20] |
H.-J. Kim, J.-H. Lee, and T.-E. Lee, “Schedulability analysis for noncyclic operation of time-constrained cluster tools with time variation,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 3, pp. 1409–1414, Jul. 2016. doi: 10.1109/TASE.2016.2531105
|
[21] |
H.-Y. Lee and T.-E. Lee, “Scheduling single-arm cluster tools with reentrant wafer flows,” IEEE Trans. Semicond. Manuf., vol. 19, no. 2, pp. 226–240, May 2006. doi: 10.1109/TSM.2006.873402
|
[22] |
N. Q. Wu, F. Chu, C. B. Chu, and M. C. Zhou, “Petri net-based scheduling of single-arm cluster tools with reentrant atomic layer deposition processes,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 1, pp. 42–55, Jan. 2011. doi: 10.1109/TASE.2010.2046736
|
[23] |
N. Q. Wu, M. C. Zhou, F. Chu, and C. B. Chu, “A Petri-net-based scheduling strategy for dual-arm cluster tools with wafer revisiting,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 43, no. 5, pp. 1182–1194, Sep. 2013. doi: 10.1109/TSMCA.2012.2230440
|
[24] |
Y. Qiao, N. Q. Wu, and M. C. Zhou, “Scheduling of dual-arm cluster tools with wafer revisiting and residency time constraints,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 286–300, Feb. 2014. doi: 10.1109/TII.2013.2272702
|
[25] |
Y. Qiao, N. Q. Wu, and M. C. Zhou, “Schedulability and scheduling analysis of dual-arm cluster tools with wafer revisiting and residency time constraints based on a novel schedule,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 45, no. 3, pp. 472–484, Mar. 2015. doi: 10.1109/TSMC.2014.2347928
|
[26] |
F. J. Yang, N. Q. Wu, Y. Qiao, M. C. Zhou, and Z. W. Li, “Scheduling of single-arm cluster tools for an atomic layer deposition process with residency time constraints,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 47, no. 3, pp. 502–516, Mar. 2017. doi: 10.1109/TSMC.2014.2318679
|
[27] |
Y. Qiao, N. Q. Wu, F. J. Yang, M. C. Zhou, Q. H. Zhu, and T. Qu, “Robust scheduling of time-constrained dual-arm cluster tools with wafer revisiting and activity time disturbance,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 49, no. 6, pp. 1228–1240, Jun. 2019. doi: 10.1109/TSMC.2017.2721979
|
[28] |
Y. Qiao, N. Q. Wu, C. R. Pan, and M. C. Zhou, “How to respond to process module failure in residency time-constrained single-arm cluster tools,” IEEE Trans. Semicond. Manuf., vol. 27, no. 4, pp. 462–474, Nov. 2014. doi: 10.1109/TSM.2014.2340858
|
[29] |
Y. Qiao, C. R. Pan, N. Q. Wu, and M. C. Zhou, “Response policies to process module failure in single-arm cluster tools subject to wafer residency time constraints,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 1125–1139, Jul. 2015. doi: 10.1109/TASE.2014.2312823
|
[30] |
H. Kim, H.-J. Kim, J.-H. Lee, and T.-E. Lee, “Scheduling dual-armed cluster tools with cleaning processes,” Int. J. Prod. Res., vol. 51, no. 12, pp. 3671–3687, Dec. 2013. doi: 10.1080/00207543.2012.758392
|
[31] |
T.-S. Yu, H.-J. Kim, and T.-E. Lee, “Scheduling single-armed cluster tools with chamber cleaning operations,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 705–716, Apr. 2018. doi: 10.1109/TASE.2017.2682271
|
[32] |
F. J. Yang, N. Q. Wu, K. Z. Gao, C. J. Zhang, Y. T. Zhu, R. Su, and Y. Qiao, “Efficient approach to cyclic scheduling of single-arm cluster tools with chamber cleaning operations and wafer residency time constraint,” IEEE Trans. Semicond. Manuf., vol. 31, no. 2, pp. 196–205, May 2018. doi: 10.1109/TSM.2018.2811125
|
[33] |
W. K. V. Chan, S. W. Ding, J. G. Yi, and D. Z. Song, “Optimal scheduling of multicluster tools with constant robot moving times, Part II: tree-like topology configurations,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 1, pp. 17–28, Jan. 2011. doi: 10.1109/TASE.2010.2046893
|
[34] |
Q. H. Zhu, N. Q. Wu, Y. Qiao, and M. C. Zhou, “Petri net-based optimal one-wafer scheduling of single-arm multi-cluster tools in semiconductor manufacturing,” IEEE Trans. Semicond. Manuf., vol. 26, no. 4, pp. 578–591, Nov. 2013. doi: 10.1109/TSM.2013.2278378
|
[35] |
F. J. Yang, N. Q. Wu, Y. Qiao, and M. C. Zhou, “Petri net-based polynomially complex approach to optimal one-wafer cyclic scheduling of hybrid multi-cluster tools in semiconductor manufacturing,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 44, no. 12, pp. 1598–1610, Dec. 2014. doi: 10.1109/TSMC.2015.2507140
|
[36] |
Q. H. Zhu, N. Q. Wu, Y. Qiao, and M. C. Zhou, “Scheduling of single-arm multi-cluster tools with wafer residency time constraints in semiconductor manufacturing,” IEEE Trans. Semicond. Manuf., vol. 28, no. 1, pp. 117–125, Feb. 2015. doi: 10.1109/TSM.2014.2375880
|
[37] |
L. P. Bai, N. Q. Wu, Z. W. Li, and M. C. Zhou, “Optimal one-wafer cyclic scheduling and buffer space configuration for single-arm multicluster tools with linear topology,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 46, no. 10, pp. 1456–1467, Oct. 2016. doi: 10.1109/TSMC.2015.2501232
|
[38] |
F. J. Yang, N. Q. Wu, Y. Qiao, and M. C. Zhou, “Optimal one-wafer cyclic scheduling of time-constrained hybrid multicluster tools via Petri nets,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 47, no. 11, pp. 2920–2932, Nov. 2017. doi: 10.1109/TSMC.2016.2531697
|
[39] |
F. J. Yang, N. Q. Wu, Y. Qiao, and R. Su, “Polynomial approach to optimal one-wafer cyclic scheduling of treelike hybrid multi-cluster tools via Petri nets,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 270–280, Jan. 2018.
|
[40] |
F. J. Yang, N. Q. Wu, Y. Qiao, and R. Su, “Optimal one-wafer cyclic scheduling of hybrid multirobot cluster tools with tree topology,” IEEE Trans. Syst.,Man,Cybern.,Syst, vol. 48, no. 2, pp. 289–298, Feb. 2018.
|
[41] |
T. Nishi, Y. Watanabe, and M. Sakai, “An efficient deadlock prevention policy for noncyclic scheduling of multicluster tools,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 4, pp. 1677–1691, Oct. 2018. doi: 10.1109/TASE.2017.2771751
|
[42] |
Q. H. Zhu, Y. Qiao, and N. Q. Wu, “Optimal integrated schedule of entire process of dual-blade multi-cluster tools from start-up to closedown,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 553–565, Mar. 2019. doi: 10.1109/JAS.2019.1911411
|
[43] |
C. R. Pan, M. C. Zhou, Y. Qiao, and N. Q. Wu, “Scheduling cluster tools in semiconductor manufacturing: recent advances and challenges,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 586–601, Apr. 2018. doi: 10.1109/TASE.2016.2642997
|
[44] |
Y. Lim, T.-S. Yu, and T.-E. Lee, “A new class of sequences without interferences for cluster tools with tight wafer delay constraints,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 1, pp. 392–405, Jan. 2019. doi: 10.1109/TASE.2018.2815157
|
[45] |
F. J. Yang, N. Q. Wu, Y. Qiao, M. C. Zhou, R. Su, and T. Qu, “Modeling and optimal cyclic scheduling of time-constrained singlerobot- arm cluster tools via Petri nets and linear programming,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 50, no. 3, pp. 871–883, Mar. 2020.
|
[46] |
J. P. Wang, C. R. Pan, H. S. Hu, L. Li, and Y. Zhou, “A cyclic scheduling approach to single-arm cluster tools with multiple wafer types and residency time constraints,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 3, pp. 1373–1386, Jul. 2019. doi: 10.1109/TASE.2018.2878063
|
[47] |
J.-H. Lee, H.-J. Kim, and T.-E. Lee, “Scheduling lot switching operations for cluster tools,” IEEE Trans. Semicond. Manuf., vol. 26, no. 4, pp. 592–601, Nov. 2013. doi: 10.1109/TSM.2013.2281083
|
[48] |
T.-K. Kim, C. Jung, and T.-E. Lee, “Scheduling start-up and close-down periods of dual-armed cluster tools with wafer delay regulation,” Int. J. Prod. Res., vol. 50, no. 10, pp. 2785–2795, May 2012. doi: 10.1080/00207543.2011.590949
|
[49] |
C. R. Pan, Y. Qiao, M. C. Zhou, and N. Q. Wu, “Scheduling and analysis of start-up transient processes for dual-armed cluster tools with wafer revisiting,” IEEE Trans. Semicond. Manuf., vol. 28, no. 2, pp. 160–170, May 2015. doi: 10.1109/TSM.2015.2390644
|
[50] |
D.-K. Kim, T.-E. Lee, and H.-J. Kim, “Optimal scheduling of transient cycles for single-armed cluster tools with parallel chambers,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, pp. 1165–1175, Apr. 2016. doi: 10.1109/TASE.2015.2443107
|
[51] |
Y. Qiao, M. C. Zhou, N. Q. Wu, and Q. H. Zhu, “Scheduling and control of startup process for single-arm cluster tools with residency time constraints,” IEEE Trans. Control. Syst. Technol., vol. 25, no. 4, pp. 1243–1256, Jul. 2017. doi: 10.1109/TCST.2016.2598762
|
[52] |
Q. H. Zhu, M. C. Zhou, Y. Qiao, and N. Q. Wu, “Scheduling transient processes for time-constrained single-arm robotic multi-cluster tools,” IEEE Trans. Semicond. Manuf., vol. 30, no. 3, pp. 261–269, Aug. 2017. doi: 10.1109/TSM.2017.2721970
|
[53] |
Q. H. Zhu, M. C. Zhou, Y. Qiao, and N. Q. Wu, “Petri net modeling and scheduling of a close-down process for time-constrained single-arm cluster tools,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 48, no. 3, pp. 389–400, Mar. 2018. doi: 10.1109/TSMC.2016.2598303
|
[54] |
J.-H. Lee, H.-J. Kim, and T.-E. Lee, “Scheduling cluster tools for concurrent processing of two wafer types,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 525–536, Apr. 2014. doi: 10.1109/TASE.2013.2296855
|
[55] |
J.-H. Lee, H.-J. Kim, and T.-E. Lee, “Scheduling cluster tools for concurrent processing of two wafer types with PM sharing,” Int. J. Prod. Res., vol. 53, no. 19, pp. 6007–6022, Oct. 2015. doi: 10.1080/00207543.2015.1035813
|
[56] |
S.-G. Ko, T.-S. Yu, and T.-E. Lee, “Scheduling dual-armed cluster tools for concurrent processing of multiple wafer types with identical job flows,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 3, pp. 1058–1070, Jul. 2019. doi: 10.1109/TASE.2018.2868004
|