IEEE/CAA Journal of Automatica Sinica
Citation: | Jinchuan Qian, Li Jiang and Zhihuan Song, "Locally Linear Back-propagation Based Contribution for Nonlinear Process Fault Diagnosis," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 764-775, May 2020. doi: 10.1109/JAS.2020.1003147 |
[1] |
S. J. Qin, “Survey on data-driven industrial process monitoring and diagnosis,” Annual Reviews in Control, vol. 36, no. 2, pp. 220–234, 2012. doi: 10.1016/j.arcontrol.2012.09.004
|
[2] |
Z. Q. Ge, Z. H. Song, and F. R. Gao, “Review of recent research on data-based process monitoring,” Industrial &Engineering Chemistry Research, vol. 52, no. 10, pp. 3543–3562, 2013.
|
[3] |
Z. Q. Ge, Z. H. Song, S. X. Ding and H. Biao, “Data mining and analytics in the process industry: the role of machine learning,” IEEE Access, vol. 5, pp. 20590–20616, 2017. doi: 10.1109/ACCESS.2017.2756872
|
[4] |
J.-M. Lee, C. Yoo, S. W. Choi, P. A. Vanrolleghem, and I.-B. Lee, “Nonlinear process monitoring using kernel principal component analysis,” Chemical Engineering Science, vol. 59, no. 1, pp. 223–234, 2004. doi: 10.1016/j.ces.2003.09.012
|
[5] |
Z. Q. Ge and Z. H. Song, “Bagging support vector data description model for batch process monitoring,” J. Process Control, vol. 23, no. 8, pp. 1090–1096, 2013. doi: 10.1016/j.jprocont.2013.06.010
|
[6] |
M. A. Kramer, “Nonlinear principal component analysis using autoas-sociative neural networks,” AIChE Journal, vol. 37, no. 2, pp. 233–243, 1991. doi: 10.1002/aic.690370209
|
[7] |
D. Dong and T. J. McAvoy, “Nonlinear principal component analysis-based on principal curves and neural networks,” Computer &Chemical Engineering, vol. 20, no. 1, pp. 65–78, 1996.
|
[8] |
K. Wang, J. H. Chen, and Z. H. Song, “Fault diagnosis for processes with feedback control loops by shifted output sampling approach,” J. Franklin Institute, vol. 355, no. 7, pp. 3249–3273, 2018. doi: 10.1016/j.jfranklin.2018.02.027
|
[9] |
J. A. Westerhuis, S. P. Gurden, and A. K. Smilde, “Generalized contribution plots in multivariate statistical process monitoring,” Chemometrics and Intelligent Laboratory Systems, vol. 51, no. 1, pp. 95–114, 2000. doi: 10.1016/S0169-7439(00)00062-9
|
[10] |
R. M. Tan and Y. Cao, “Multi-layer contribution propagation analysis for fault diagnosis,” Int. J. Autom. and Computing, vol. 16, no. 1, pp. 40–51, 2019. doi: 10.1007/s11633-018-1142-y
|
[11] |
R. M. Tan and Y. Cao, “Deviation contribution plots of multivariate statistics,” IEEE Trans. Industrial Informatics, vol. 15, no. 2, pp. 833–841, 2018.
|
[12] |
C. F. Alcala and S. J. Qin, “Reconstruction-based contribution for process monitoring,” Automatica, vol. 45, no. 7, pp. 1593–1600, 2009. doi: 10.1016/j.automatica.2009.02.027
|
[13] |
C. F. Alcala and S. J. Qin, “Reconstruction-based contribution for process monitoring with kernel principal component analysis,” Industrial &Engineering Chemistry Research, vol. 49, no. 17, pp. 7849–7857, 2010.
|
[14] |
Z. Q. Ge, M. G. Zhang, and Z. H. Song, “Nonlinear process monitoring based on linear subspace and bayesian inference,” J. Process Control, vol. 20, no. 5, pp. 676–688, 2010. doi: 10.1016/j.jprocont.2010.03.003
|
[15] |
Z. B. Yan and Y. Yao, “Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO),” Chemometrics and Intelligent Laboratory Systems, vol. 146, pp. 136–146, 2015. doi: 10.1016/j.chemolab.2015.05.019
|
[16] |
Z. B. Yan, T.-H Kuang, and Y. Yao, “Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis,” ISA Trans., vol. 70, pp. 389–399, 2017. doi: 10.1016/j.isatra.2017.06.014
|
[17] |
J. X. Yu, K. Wang, L. J. Ye, and Z. H. Song, “Accelerated kernel canonical correlation analysis with fault relevance for nonlinear process fault isolation,” Industrial &Engineering Chemistry Research, vol. 58, no. 39, pp. 18280–18291, 2019.
|
[18] |
Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013. doi: 10.1109/TPAMI.2013.50
|
[19] |
G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006. doi: 10.1126/science.1127647
|
[20] |
X. F. Yuan, B. Huang, Y. L. Wang, C. H. Yang, and W. H. Gui, “Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE,” IEEE Trans. Industrial Information, vol. 14, no. 7, pp. 3235–3243, 2018. doi: 10.1109/TII.2018.2809730
|
[21] |
X. F. Yuan, C. Ou, Y. L. Wang, C. H. Yang, and W. H. Gui, “Deep quality-related feature extraction for soft sensing modeling: a deep learning approach with hybrid VM-SAE,” Neurocomputing, Apr. 2019.
|
[22] |
X. F. Yuan, L. Li, and Y. L. Wang, “Nonlinear dynamic soft sensor modeling with supervised long short-term memory network,” IEEE Trans. Industrial Information, Feb. 2019.
|
[23] |
W. W. Yan, P. J. Guo, L. Gong, and Z. K. Li, “Nonlinear and robust statistical process monitoring based on variant autoencoders,” Chemometrics and Intelligent Laboratory Systems, vol. 158, pp. 31–40, 2016. doi: 10.1016/j.chemolab.2016.08.007
|
[24] |
L. Jiang, Z. H. Song, Z. Q. Ge, and J. H. Chen, “Robust self-supervised model and its application for fault detection,” Industrial &Engineering Chemistry Research, vol. 56, no. 26, pp. 7503–7515, 2017.
|
[25] |
H. T. Zhao, “Neural component analysis for fault detection,” Chemo- metrics and Intelligent Laboratory Systems, vol. 176, pp. 11–21, 2018. doi: 10.1016/j.chemolab.2018.02.001
|
[26] |
H. D. Shao, H. K. Jiang, K. Zhao, D. D. Wei, and X. Q. Li, “A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings,” Mechanical Systems and Signal Processing, vol. 110, pp. 193–209, 2018. doi: 10.1016/j.ymssp.2018.03.011
|
[27] |
P. Tamilselvan and P. F. Wang, “Failure diagnosis using deep belief learning based health state classification,” Reliability Engineering &System Safety, vol. 115, pp. 124–135, 2013.
|
[28] |
Y. L. Wang, Z. F. Pan, X. F. Yuan, C. H. Yang, and W. H. Gui, “A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network,” ISA Trans., 2019.
|
[29] |
G. Alain and Y. Bengio, “What regularized auto-encoders learn from the data-generating distribution,” The J. Machine Learning Research, vol. 15, no. 1, pp. 3563–3593, 2014.
|
[30] |
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion,” J. Machine Learning Research, vol. 11, no. 12, pp. 3371–3408, Dec. 2010.
|
[31] |
L. Jiang, Z. Q. Ge, and Z. H. Song, “Semi-supervised fault classification based on dynamic sparse stacked auto-encoders model,” Chemometrics and Intelligent Laboratory Systems, vol. 168, pp. 72–83, 2017. doi: 10.1016/j.chemolab.2017.06.010
|
[32] |
P. R. Lyman and C. Georgakis, “Plant-wide control of the tennessee eastman problem,” Computer &Chemical Engineering, vol. 19, no. 3, pp. 321–331, 1995.
|