IEEE/CAA Journal of Automatica Sinica
Citation: | Dong Zhang, Hao Yuan and Zhengcai Cao, "Environmental Adaptive Control of a Snake-like Robot With Variable Stiffness Actuators," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 745-751, May 2020. doi: 10.1109/JAS.2020.1003144 |
[1] |
R. Bogue, “Snake robots: a review of research, products and applications,” Industrial Robot, vol. 41, no. 3, pp. 253–258, 2014. doi: 10.1108/IR-02-2014-0309
|
[2] |
H. Ohno and S. Hirose, “Design of slim slime robot and its gait of locomotion,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 707–715, 2001.
|
[3] |
A. Crespi, A. Badertscher, A. Guignard, and A. J. Ijspeert, “AmphiBot I: an amphibious snake-like robot,” Mechatronics, vol. 50, no. 4, pp. 163–175, 2005. doi: 10.1016/j.robot.2004.09.015
|
[4] |
H. Kimura and S. Hirose, “Development of Genbu: active wheel passive joint articulated mobile robot,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 823–828, 2002.
|
[5] |
H. Yamada and S. Hirose, “Development of practical 3-dimensional active cord mechanism ACM-R4,” J. Robotics &Mechatronics, vol. 18, no. 3, pp. 305–311, 2006.
|
[6] |
S. Sugita, K. Ogami, G. Michele, S. Hirose, and K. Takita, “A study on the mechanism and locomotion strategy for new snake-like robot active cord mechanism Slime model 1 ACM-S1,” J. Robotics &Mechatronics, vol. 20, no. 2, pp. 302–310, 2008.
|
[7] |
P. Liljebäck, K. Pettersen, Ø. Stavdahl, and J. Gravdahl, “Controllability and stability analysis of planar snake robot locomotion,” IEEE Trans. Autom. Control, vol. 56, no. 6, pp. 1365–1380, 2011. doi: 10.1109/TAC.2010.2088830
|
[8] |
X. D. Wu and S. G. Ma, “Adaptive creeping locomotion of a CPG-controlled snake-like robot to environment change,” Autonomous Robots, vol. 28, no. 3, pp. 283–294, 2010. doi: 10.1007/s10514-009-9168-1
|
[9] |
E. Kelasidi, M. Jesmani, K. Y. Pettersen, and J. T. Gravdahl, “Multiobjective optimization for efficient motion of underwater snake robots,” Artificial Life &Robotics, vol. 21, no. 4, pp. 1–12, 2016.
|
[10] |
Z. C. Cao, Q. Xiao, R. Huang, and M. C. Zhou, “Robust neuro-optimal control of underactuated snake robots with experience replay,” IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 1, pp. 208–217, 2018. doi: 10.1109/TNNLS.2017.2768820
|
[11] |
A. A. Transeth, R. I. Leine, and K. Y. Pettersen, “3-D snake robot motion: nonsmooth modeling, simulations, and experiments,” IEEE Trans. Robotics, vol. 24, no. 2, pp. 361–376, 2008. doi: 10.1109/TRO.2008.917003
|
[12] |
R. Hatton and H. Choset, “Sidewinding on slopes,” in Proc. IEEE Int. Conf. on Robotics and Autom., pp. 691–696, 2010.
|
[13] |
H. Marvi, C. H. Gong, N. Gravish, H. Astley, M. Travers, R. L. Hatton, J. R. Mendelson, H. Choset, D. L. Hu, and D. I. Goldman, “Sidewinding with minimal slip: snake and robot ascent of sandy slopes,” Science, vol. 346, no. 6206, pp. 224–229, 2014. doi: 10.1126/science.1255718
|
[14] |
J. Whitman, N. Zevallos, M. Travers, and H. Choset, “Snake robot urban search after the 2017 mexico city earthquake,” in Proc. IEEE Int. Symposium on Safety, Security, and Rescue Robotics, pp. 2475–8426, 2018.
|
[15] |
P. U. Chavan, M. Murugan, E. V. Unnikkannan, and A. Singh, “Modular snake robot with mapping and navigation: urban search and rescue (USAR) robot,” in Proc. Int. Conf. on Computing Communication Control & Automation, 2015. doi: 10.1109/ICCUBEA.2015.110
|
[16] |
M. Okui, S. Iikawa, Y. Yamada, and T. Nakamura, “Variable viscoelastic joint system and its application to exoskeleton,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3897–3902, 2017.
|
[17] |
Y. W. Liu, X. G. Liu, Z. Q. Yuan, and J. G. Liu, “Design and analysis of spring parallel variable stiffness actuator based on antagonistic principle,” Mechanism and Machine Theory, vol. 140, pp. 44–58, 2019. doi: 10.1016/j.mechmachtheory.2019.05.016
|
[18] |
Z. Zhang, G. L. Yang, and H. Y. Song, “Inverse kinematics of modular cable-driven snake-like robots with flexible backbones,” in Proc. 5th IEEE Robotics, Autom. and Mechatronics, pp. 41–461, 2011.
|
[19] |
J. Sheard, R. Draper, and M. Troughton, “Soft robotic snake with variable stiffness actuation,” in Proc. Towards Autonomous Robotic Systems, pp. 363–377, 2017.
|
[20] |
J. W. Sohn, J. Jeon, Q. H. Nguyen, and S. B. Choi, “Optimal design of disctype magneto-rheological brake for mid-sized motorcycle: experimental evaluation,” Smart Materials &Structures, vol. 24, no. 8, pp. 1–11, 2015.
|
[21] |
A. Calanca, R. Muradore, and P. Fiorini, “A review of algorithms for compliant control of stiff and fixed-compliance robots,” Smart Materials &Structures, vol. 21, no. 2, pp. 613–624, 2016.
|
[22] |
P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, “Compliant control of the body shape of snake robots,” in Proc. IEEE Int. Conf. on Robotics & Autom., pp. 4549–4555, 2014.
|
[23] |
M. Vespignani, K. Melo, and M. Mutlu, “Compliant snake robot locomotion on horizontal pipes,” in Proc. IEEE Int. Symposium on Safety, pp. 370–375, 2016.
|
[24] |
A. Kakogawa, S. Jeon, and S. G. Ma, “Stiffness design of a resonancebased planar snake robot with parallel elastic actuators,” IEEE Robotics and Autom. Letters, vol. 3, no. 2, pp. 1284–1291, 2018. doi: 10.1109/LRA.2018.2797261
|
[25] |
Z. C. Cao, D. Zhang, H. Biao, and J. G. Liu, “Adaptive path following and locomotion optimization of snake-like robot controlled by the central pattern generator,” Complexity, vol. 2019, pp. 8030374, 2019.
|
[26] |
G. F. Qiao, X. L. Wen, G. M. Song, and Q. Wan, “Effects of the compliant intervertebral discs in the snake-like robots: a simulation study,” in Proc. IEEE Int. Conf. on Robotics & Biomimetics, pp. 813–818, 2017.
|
[27] |
J. Whitman, F. Ruscelli, and M. Travers, “Shape-based compliant control with variable coordination centralization on a snake robot,” in Proc. IEEE Conf. on Decision & Control, pp. 5165–5170, 2016.
|
[28] |
J. K. Li, B. Hu, P. Geng, and Z. C. Cao, “Variable stiffness mechanism design and analysis for a snake-like robot,” in Proc. IEEE Int. Conf. on Robotics & Biomimetics, pp. 331–336, 2018.
|
[29] |
X. Guo, S. G. Ma, B. Li, and M. H. Wang, “Locomotion control of a snake-like robot based on velocity disturbance,” in Proc. IEEE Int. Conf. on Robotics & Biomimetics, pp. 582–587, 2014.
|
[30] |
Q. F. Zhang and H. Li, “MOEA/D: a multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2008.
|
[31] |
Q. Kang, X. Y. Song, M. C. Zhou, and L. Li, “A collaborative resource allocation strategy for decomposition-based multi objective evolutionary algorithms,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 49, no. 12, pp. 2416–2423, 2019.
|
[32] |
Q. L. Peng, M. C. Zhou, Q. He, Y. N. Xia, C. R. Wu, and S. G. Deng, “Multi-objective optimization for location prediction of mobile devices in sensor-based applications,” IEEE Access, vol. 6, pp. 77123–77132, 2018. doi: 10.1109/ACCESS.2018.2869897
|