A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 3
Apr.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Xin Huang and Jiuxiang Dong, "Learning-Based Switched Reliable Control of Cyber-Physical Systems With Intermittent Communication Faults," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 711-724, May 2020. doi: 10.1109/JAS.2020.1003141
Citation: Xin Huang and Jiuxiang Dong, "Learning-Based Switched Reliable Control of Cyber-Physical Systems With Intermittent Communication Faults," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 711-724, May 2020. doi: 10.1109/JAS.2020.1003141

Learning-Based Switched Reliable Control of Cyber-Physical Systems With Intermittent Communication Faults

doi: 10.1109/JAS.2020.1003141
Funds:  This work was supported in part by the National Natural Science Foundation of China (61873056, 61473068, 61273148, 61621004, 61420106016), the Fundamental Research Funds for the Central Universities in China (N170405004, N182608004), and the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries in China (2013ZCX01)
More Information
  • This study deals with reliable control problems in data-driven cyber-physical systems (CPSs) with intermittent communication faults, where the faults may be caused by bad or broken communication devices and/or cyber attackers. To solve them, a watermark-based anomaly detector is proposed, where the faults are divided to be either detectable or undetectable. Secondly, the fault’s intermittent characteristic is described by the average dwell-time (ADT)-like concept, and then the reliable control issues, under the undetectable faults to the detector, are converted into stabilization issues of switched systems. Furthermore, based on the identifier-critic-structure learning algorithm, a data-driven switched controller with a prescribed-performance-based switching law is proposed, and by the ADT approach, a tolerated fault set is given. Additionally, it is shown that the presented switching laws can improve the system performance degradation in asynchronous intervals, where the degradation is caused by the fault-maker-triggered switching rule, which is unknown for CPS operators. Finally, an illustrative example validates the proposed method.

     

  • loading
  • [1]
    J. L. Liu, Z. G. Wu, D. Yue, and J. H. Park, “Stabilization of networked control systems with hybrid-driven mechanism and probabilistic cyber attacks,” IEEE Trans. Syst., Man, Cybern.: Syst., DOI: 10.1109/tsmc. 2018.2888633. Jan. 2019.
    [2]
    T. Liu, B. Tian, Y. F. Ai, and F.-Y. Wang, “Parallel reinforcement learning-based energy efficiency improvement for a cyber-physical system,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 617–626, Mar. 2020. doi: 10.1109/jas.2019.1911633
    [3]
    D. R. Ding, Q. L. Han, Y. Xiang, X. H. Ge, and X. M. Zhang, “A survey on security control and attack detection for industrial cyber-physical systems,” Neurocomputing, vol. 275, pp. 1674–1683, Jan. 2018. doi: 10.1016/j.neucom.2017.10.009
    [4]
    J. L. Liu, L. L. Wei, X. P. Xie, E. G. Tian, and S. M. Fei, “Quantized stabilization for T-S fuzzy systems with hybrid-triggered mechanism and stochastic cyber-attacks,” IEEE Trans. Fuzzy Syst., vol. 26, no. 6, pp. 3820–3834, Dec. 2018. doi: 10.1109/TFUZZ.2018.2849702
    [5]
    W. Sun, S. F. Su, J. W. Xia, and V. T. Nguyen, “Adaptive fuzzy tracking control of flexible-joint robots with full-state constraints,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 49, no. 11, pp. 2201–2209, Nov. 2019. doi: 10.1109/TSMC.2018.2870642
    [6]
    J. B. Qiu, H. J. Gao, and S. X. Ding, “Recent advances on fuzzy-model-based nonlinear networked control systems: a survey,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1207–1217, Feb. 2016. doi: 10.1109/TIE.2015.2504351
    [7]
    X. Z. Jin, G. H. Yang, and L. Peng, “Robust adaptive tracking control of distributed delay systems with actuator and communication failures,” Asian J. Control, vol. 14, no. 5, pp. 1282–1298, Sep. 2012. doi: 10.1002/asjc.389
    [8]
    M. Al Janaideh, E. Hammad, A. Farraj, and D. Kundur, “Mitigating attacks with nonlinear dynamics on actuators in cyber-physical mechatronic systems,” IEEE Trans. Ind. Inform., vol. 15, no. 9, pp. 4845–4856, Sep. 2019. doi: 10.1109/TII.2019.2899933
    [9]
    W. Sun, S. F. Su, Y. Q. Wu, J. W. Xia, and V. T. Nguyen, “Adaptive fuzzy control with high-order barrier Lyapunov functions for high-order Uncertain nonlinear systems with full-state constraints,” IEEE Trans. Cybern., DOI: 10.1109/tcyb.2018.2890256. Jan. 2019.
    [10]
    M. S. Mahmoud, M. M. Hamdan, and U. A. Baroudi, “Modeling and control of cyber-physical systems subject to cyber attacks: a survey of recent advances and challenges,” Neurocomputing, vol. 338, pp. 101–115, Nov. 2019. doi: 10.1016/j.neucom.2019.01.099
    [11]
    X. Huang and J. X. Dong, “On modeling and secure control of cyber-physical systems with attacks/faults changing system dynamics: an average dwell-time approach,” Int. J. Robust Nonlinear Control, vol. 29, no. 16, pp. 5481–5498, Nov. 2019. doi: 10.1002/rnc.4675
    [12]
    H. Zhang, P. Cheng, L. Shi, and J. M. Chen, “Optimal denial-of-service attack scheduling with energy constraint,” IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 3023–3028, Nov. 2015. doi: 10.1109/TAC.2015.2409905
    [13]
    Y. Tang, D. D. Zhang, D. W. C. Ho, W. Yang, and B. Wang, “Event-based tracking control of mobile robot with denial-of-service attacks,” IEEE Trans. Syst., Man, Cybern.: Syst., DOI: 10.1109/tsmc.2018.28757 93. Nov. 2018.
    [14]
    Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estimation in electric power grids,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 1, pp. 13, Jun. 2011.
    [15]
    G. Y. Wu, J. Sun, and J. Chen, “Optimal data injection attacks in cyber-physical systems,” IEEE Trans. Cybern., vol. 48, no. 12, pp. 3302–3312, Dec. 2018. doi: 10.1109/TCYB.2018.2846365
    [16]
    Y. L. Mo, S. Weerakkody, and B. Sinopoli, “Physical authentication of control systems: Designing watermarked control inputs to detect counterfeit sensor outputs,” IEEE Control Syst., vol. 35, no. 1, pp. 93–109, Feb. 2015. doi: 10.1109/MCS.2014.2364724
    [17]
    A. Hoehn and P. Zhang, “Detection of replay attacks in cyber-physical systems, ” in Proc. American Control Conf. (ACC), Boston, USA, 2016, pp. 290−295.
    [18]
    X. Jin, W. M. Haddad, and T. Yucelen, “An adaptive control architecture for mitigating sensor and actuator attacks in cyber-physical systems,” IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 6058–6064, Nov. 2017. doi: 10.1109/TAC.2017.2652127
    [19]
    Z. Y. Guo, D. W. Shi, K. H. Johansson, and L. Shi, “Optimal linear cyber-attack on remote state estimation,” IEEE Trans. Control Network Syst., vol. 4, no. 1, pp. 4–13, Mar. 2017. doi: 10.1109/TCNS.2016.2570003
    [20]
    X. J. Li and X. Y. Shen, “A data-driven attack detection approach for DC servo motor systems based on mixed optimization strategy,” IEEE Trans. Ind. Inform., DOI: 10.1109/tii.2019.2960616. Dec. 2019.
    [21]
    F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identification in cyber-physical systems,” IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2715–2729, Nov. 2013. doi: 10.1109/TAC.2013.2266831
    [22]
    K. G. Vamvoudakis, J. P. Hespanha, B. Sinopoli, and Y. L. Mo, “Detection in adversarial environments,” IEEE Trans. Autom. Control, vol. 59, no. 12, pp. 3209–3223, Dec. 2014. doi: 10.1109/TAC.2014.2351671
    [23]
    H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and control for cyber-physical systems under adversarial attacks,” IEEE Trans. Autom. Control, vol. 59, no. 6, pp. 1454–1467, Jun. 2014. doi: 10.1109/TAC.2014.2303233
    [24]
    A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “A secure control framework for resource-limited adversaries,” Automatica, vol. 51, pp. 135–148, Jan. 2015. doi: 10.1016/j.automatica.2014.10.067
    [25]
    Y. Chen, S. Kar, and J. M. F. Moura, “Dynamic attack detection in cyber-physical systems with side initial state information,” IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4618–4624, Sep. 2017. doi: 10.1109/TAC.2016.2626267
    [26]
    J. X. Dong, Y. Wu, and G. H. Yang, “A new sensor fault isolation method for T-S fuzzy systems,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2437–2447, Sep. 2017. doi: 10.1109/TCYB.2017.2707422
    [27]
    W. Ao, Y. D. Song, and C. Y. Wen, “Adaptive cyber-physical system attack detection and reconstruction with application to power systems,” IET Control Theory Appl., vol. 10, no. 12, pp. 1458–1468, Aug. 2016. doi: 10.1049/iet-cta.2015.1147
    [28]
    J. Yang, C. J. Zhou, S. H. Yang, H. Z. Xu, and B. W. Hu, “Anomaly detection based on zone partition for security protection of industrial cyber-physical systems,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4257–4267, May 2018. doi: 10.1109/TIE.2017.2772190
    [29]
    M. S. Mahmoud and Y. Q. Xia, Networked Control Systems: Cloud Control and Secure Control. Kidlington, UK: Butterworth-Heinemann, 2019.
    [30]
    H. H. Yuan, Y. Q. Xia, J. H. Zhang, H. J. Yang, and M. S. Mahmoud, “Stackelberg-game-based defense analysis against advanced persistent threats on cloud control system,” IEEE Trans. Ind. Inform., vol. 16, no. 3, pp. 1571–1580, Mar. 2020. doi: 10.1109/tii.2019.2925035
    [31]
    A. Kanellopoulos and K. G. Vamvoudakis, “A moving target defense control framework for cyber-physical systems,” IEEE Trans. Autom. Control, vol. 65, no. 3, pp. 1029–1043, Mar. 2020. doi: 10.1109/tac.2019.2915746
    [32]
    A. Y. Lu and G. H. Yang, “Event-triggered secure observer-based control for cyber-physical systems under adversarial attacks,” Inform. Sci., vol. 420, pp. 96–109, Dec. 2017. doi: 10.1016/j.ins.2017.08.057
    [33]
    X. Huang and J. X. Dong, “Reliable control policy of cyber-physical systems against a class of frequency-constrained sensor and actuator attacks,” IEEE Trans. Cybern., vol. 48, no. 12, pp. 3432–3439, Dec. 2018. doi: 10.1109/TCYB.2018.2815758
    [34]
    C. De Persis and P. Tesi, “Input-to-state stabilizing control under denial-of-service,” IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 2930–2944, Nov. 2015. doi: 10.1109/TAC.2015.2416924
    [35]
    S. Feng and P. Tesi, “Resilient control under denial-of-service: robust design,” Automatica, vol. 79, pp. 42–51, May 2017. doi: 10.1016/j.automatica.2017.01.031
    [36]
    T. Yucelen, W. M. Haddad, and E. M. Feron, “Adaptive control architectures for mitigating sensor attacks in cyber-physical systems,” Cyber-Phys. Syst., vol. 2, no. 1−4, pp. 24–52, Oct. 2016. doi: 10.1080/23335777.2016.1244562
    [37]
    L. W. An and G. H. Yang, “Improved adaptive resilient control against sensor and actuator attacks,” Inform. Sci., vol. 423, pp. 145–156, Jan. 2018. doi: 10.1016/j.ins.2017.09.042
    [38]
    X. Huang, D. Zhai, and J. X. Dong, “Adaptive integral sliding-mode control strategy of data-driven cyber-physical systems against a class of actuator attacks,” IET Control Theory Appl., vol. 12, no. 10, pp. 1440–1447, Jul. 2018.
    [39]
    S. Yin, H. J. Gao, S. Ding, and Z. Wang, “Date-based control and process monitoring with industrial applications,” IET Control Theory Appl., vol. 9, no. 7, pp. 997–999, Apr. 2015. doi: 10.1049/iet-cta.2014.1350
    [40]
    Y. Jiang and Z. P. Jiang, “Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics,” Automatica, vol. 48, no. 10, pp. 2699–2704, Oct. 2012. doi: 10.1016/j.automatica.2012.06.096
    [41]
    H. Modares, F. L. Lewis, and M. B. Naghibi-Sistani, “Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks,” IEEE Trans. Neural Networks Learn. Syst., vol. 24, no. 10, pp. 1513–1525, Oct. 2013. doi: 10.1109/TNNLS.2013.2276571
    [42]
    M. Wang and A. L. Yang, “Dynamic learning from adaptive neural control of robot manipulators with prescribed performance,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 47, no. 8, pp. 2244–2255, Aug. 2017. doi: 10.1109/TSMC.2016.2645942
    [43]
    Y. Yuan, H. H. Yuan, Z. D. Wang, L. Guo, and H. J. Yang, “Optimal control for networked control systems with disturbances: a delta operator approach,” IET Control Theory Appl., vol. 11, no. 9, pp. 1325–1332, Jun. 2017. doi: 10.1049/iet-cta.2016.1279
    [44]
    Y. Yuan, L. Guo, and Z. D. Wang, “Composite control of linear quadratic games in delta domain with disturbance observers,” J. Franklin Inst., vol. 354, no. 4, pp. 1673–1695, Mar. 2017. doi: 10.1016/j.jfranklin.2016.12.003
    [45]
    Q. L. Wei, R. Z. Song, and P. F. Yan, “Data-driven zero-sum neuro-optimal control for a class of continuous-time unknown nonlinear systems with disturbance using ADP,” IEEE Trans. Neural Networks Learn. Syst., vol. 27, no. 2, pp. 444–458, Feb. 2016. doi: 10.1109/TNNLS.2015.2464080
    [46]
    H. L. Li, D. R. Liu, and D. Wang, “Integral reinforcement learning for linear continuous-time zero-sum games with completely unknown dynamics,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 3, pp. 706–714, Jul. 2014. doi: 10.1109/TASE.2014.2300532
    [47]
    B. Luo, D. R. Liu, H. N. Wu, D. Wang, and F. L. Lewis, “Policy gradient adaptive dynamic programming for data-based optimal control,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3341–3354, Oct. 2017. doi: 10.1109/TCYB.2016.2623859
    [48]
    Y. F. Lv, J. Na, and X. M. Ren, “Online H control for completely unknown nonlinear systems via an identifier-critic-based ADP structure,” Int. J. Control, vol. 92, no. 1, pp. 100–111, 2019. doi: 10.1080/00207179.2017.1381763
    [49]
    K. G. Vamvoudakis and H. Ferraz, “Model-free event-triggered control algorithm for continuous-time linear systems with optimal performance,” Automatica, vol. 87, pp. 412–420, Jan. 2018. doi: 10.1016/j.automatica.2017.03.013
    [50]
    X. Yang and H. B. He, “Adaptive critic designs for event-triggered robust control of nonlinear systems with unknown dynamics,” IEEE Trans. Cybern., vol. 49, no. 6, pp. 2255–2267, Jun. 2019. doi: 10.1109/TCYB.2018.2823199
    [51]
    C. Y. Wu, C. S. Li, and J. Zhao, “Switching-based state tracking of model reference adaptive control systems in the presence of intermittent failures of all actuators,” Int. J. Adapt. Control Signal Process., vol. 28, no. 11, pp. 1094–1105, Nov. 2014. doi: 10.1002/acs.2430
    [52]
    R. Wang, J. Zhao, G. M. Dimirovski, and G. P. Liu, “Output feedback control for uncertain linear systems with faulty actuators based on a switching method,” Int. J. Robust Nonlinear Control, vol. 19, no. 12, pp. 1295–1312, Aug. 2009. doi: 10.1002/rnc.1379
    [53]
    A. Gelb and W. E. Velde, Multiple-Input Describing Functions and Nonlinear System Design. New York: McGraw-Hill, 1968.
    [54]
    W. J. Rugh, Linear System Theory. 2nd ed. Upper Saddle River, USA: Prentice Hall, 1996.
    [55]
    F. L. Lewis, D. L. Vrabie, and V. L. Syrmos, Optimal Control. New York, USA: John Wiley & Sons, 2012.
    [56]
    J. Na, J. Yang, X. Wu, and Y. Guo, “Robust adaptive parameter estimation of sinusoidal signals,” Automatica, vol. 53, pp. 376–384, Mar. 2015. doi: 10.1016/j.automatica.2015.01.019
    [57]
    M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach,” Automatica, vol. 41, no. 5, pp. 779–791, May 2005. doi: 10.1016/j.automatica.2004.11.034
    [58]
    J. S. Wang and G. H. Yang, “Output-feedback control of unknown linear discrete-time systems with stochastic measurement and process noise via approximate dynamic programming,” IEEE Trans. Cybern., vol. 48, no. 7, pp. 1977–1988, Jul. 2018. doi: 10.1109/TCYB.2017.2726004

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1513) PDF downloads(108) Cited by()

    Highlights

    • According to the theory of the describing function, a watermark-based anomaly detector is presented, so that the faults are divided to be detectable and undetectable to the detector. It can contribute to the effective execution of the proposed learning-based switched control policy.
    • Based on the identifier-critic-structure learning algorithm, a data-driven switched controller with a prescribed-performance-based switching law is proposed, and with the aid of the average dwell-time approach, a fault set, which the closed-loop systems can tolerate, is given.
    • The advantages of the presented method are:
      a) Different from the model-based secure control results, ours is data-driven;
      b) Compared with most of ADP-based model-free methods, the new one guarantees the reliability for the case of a class of intermittent communication faults;
      c) Contrary to the switched controls under the intermittent faults, the system knowledge and switching rule are unknown for the CPS operators in this paper.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return