A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 3
Apr.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Mohammadhossein Ghahramani, MengChu Zhou and Gang Wang, "Urban Sensing Based on Mobile Phone Data: Approaches, Applications, and Challenges," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 627-637, May 2020. doi: 10.1109/JAS.2020.1003120
Citation: Mohammadhossein Ghahramani, MengChu Zhou and Gang Wang, "Urban Sensing Based on Mobile Phone Data: Approaches, Applications, and Challenges," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 627-637, May 2020. doi: 10.1109/JAS.2020.1003120

Urban Sensing Based on Mobile Phone Data: Approaches, Applications, and Challenges

doi: 10.1109/JAS.2020.1003120
Funds:  This work was supported by Fundo para o Desenvolvimento das Ciencias e da Tecnologia (FDCT) (119/2014/A3)
More Information
  • Data volume grows explosively with the proliferation of powerful smartphones and innovative mobile applications. The ability to accurately and extensively monitor and analyze these data is necessary. Much concern in cellular data analysis is related to human beings and their behaviours. Due to the potential value that lies behind these massive data, there have been different proposed approaches for understanding corresponding patterns. To that end, analyzing people’s activities, e.g., counting them at fixed locations and tracking them by generating origin-destination matrices is crucial. The former can be used to determine the utilization of assets like roads and city attractions. The latter is valuable when planning transport infrastructure. Such insights allow a government to predict the adoption of new roads, new public transport routes, modification of existing infrastructure, and detection of congestion zones, resulting in more efficient designs and improvement. Smartphone data exploration can help research in various fields, e.g., urban planning, transportation, health care, and business marketing. It can also help organizations in decision making, policy implementation, monitoring, and evaluation at all levels. This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data. We classify these existing methods and present a taxonomy of the related work by discussing their pros and cons.

     

  • loading
  • [1]
    M. Steinbauer and G. Kotsis, “Building an information system for reality mining based on communication traces,” in Proc. 15th Int. Conf. Network-Based Information Systems, Melbourne, Australia, 2012, pp. 306–310.
    [2]
    M. A. Bayir, M. Demirbas, and N. Eagle, “Discovering spatiotemporal mobility profiles of cellphone users,” in Proc. 2009 IEEE Int. Symp. A World of Wireless, Mobile and Multimedia Networks & Workshops, Kos, Greece, 2009, pp. 1–9.
    [3]
    S. G. Deng, L. T. Huang, J. Taheri, J. W. Yin, M. C. Zhou, and A. Y. Zomaya, “Mobility-aware service composition in mobile communities,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 47, no. 3, pp. 555–568, Mar. 2017. doi: 10.1109/TSMC.2016.2521736
    [4]
    Z. Z. Wang, S. Y. He, and Y. Leung, “Applying mobile phone data to travel behaviour research: a literature review,” Travel Behav. Soc., vol. 47, pp. 141–155, Apr. 2018.
    [5]
    V. D. Blondel, A. Decuyper, and G. Krings, “A survey of results on mobile phone datasets analysis,” EPJ Data Sci, vol. 4, no. 1, pp. 10, 2015. doi: 10.1140/epjds/s13688-015-0046-0
    [6]
    L. Smit, A. Stander, and J. Ophoff, “Investigating the accuracy of base station information for estimating cellphone location,” in Proc. 2012 Int. Conf. Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), Kuala Lumpur, Malaysia, 2012, pp. 88–93.
    [7]
    M. Olsson, S. Sultana, S. Rommer, L. Frid, and C. Mulligan, SAE and the Evolved Packet Core: Driving the Mobile Broadband Revolution. Oxford, UK: Academic Press, 2009.
    [8]
    F. Bignami, “Privacy and law enforcement in the European union: the data retention directive,” Chicago J. Int. Law, vol. 8, no. 1, pp. 233, Aug. 2007.
    [9]
    M. C. González, C. A. Hidalgo, and A. L. Barabási, “Understanding individual human mobility patterns,” Nature, vol. 453, no. 7196, pp. 779–782, Jun. 2008. doi: 10.1038/nature06958
    [10]
    N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag., vol. 48, no. 9, pp. 140–150, Sep. 2010. doi: 10.1109/MCOM.2010.5560598
    [11]
    N. Eagle and A. Pentland, “Reality mining: sensing complex social systems,” Pers. Ubiquit. Comput., vol. 10, no. 4, pp. 255–268, May 2006. doi: 10.1007/s00779-005-0046-3
    [12]
    Z. Q. Shen and K. L. Ma, “MobiVis: a visualization system for exploring mobile data,” in Proc. 2008 IEEE Pacific Visualization Symp., Kyoto, Japan, 2008.
    [13]
    M. Ficek and L. Kencl, “Spatial extension of the reality mining dataset,” in Proc. 7th IEEE Int. Conf. Mobile Ad-hoc and Sensor Systems, California, USA, 2010, pp. 666–673.
    [14]
    S. Nikolopoulos, S. Papadopoulos, and Y. Kompatsiaris, “Reality mining in urban space,” in IISA 2013, Piraeus, Greece, 2013, pp. 1–4.
    [15]
    S. Chen, H. W. Wu, L. Tu, and B. X. Huang, “Identifying hot lines of urban spatial structure using cellphone call detail record data,” in Proc. IEEE 11th Int. Conf. Ubiquitous Intelligence and Computing and IEEE 11th Int. Conf. Autonomic and Trusted Computing and IEEE 14th Int. Conf. Scalable Computing and Communications and Its Associated Workshops, Bali, Indonesia, 2014, pp. 299–304.
    [16]
    R. Trasarti, A. M. Olteanu-Raimond, M. Nanni, T. Couronné, B. Furletti, F. Giannotti, Z. Smoreda, and C. Ziemlicki, “Discovering urban and country dynamics from mobile phone data with spatial correlation patterns,” Telecommun. Policy, vol. 39, no. 3–4, pp. 347–362, May 2015. doi: 10.1016/j.telpol.2013.12.002
    [17]
    R. A. Becker, R. Caceres, K. Hanson, J. M. Loh, S. Urbanek, A. Varshavsky, and C. Volinsky, “A tale of one city: using cellular network data for urban planning,” IEEE Pervasive Comput., vol. 10, no. 4, pp. 18–26, Apr. 2011. doi: 10.1109/MPRV.2011.44
    [18]
    N. Caceres, L. M. Romero, F. G. Benitez, and J. M. del Castillo, “Traffic flow estimation models using cellular phone data,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 3, pp. 1430–1441, Sept. 2012. doi: 10.1109/TITS.2012.2189006
    [19]
    F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti, “Real-time urban monitoring using cell phones: a case study in Rome,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 1, pp. 141–151, Mar. 2011. doi: 10.1109/TITS.2010.2074196
    [20]
    M. G. Demissie, G. H. de Almeida Correia, and C. Bento, “Exploring cellular network handover information for urban mobility analysis,” J. Transp. Geogr., vol. 31, pp. 164–170, Jul. 2013. doi: 10.1016/j.jtrangeo.2013.06.016
    [21]
    M. G. Demissie, G. H. de Almeida Correia, and C. Bento, “Intelligent road traffic status detection system through cellular networks handover information: an exploratory study,” Transp. Res. Part C:Emerg. Technol., vol. 32, pp. 76–88, Jul. 2013. doi: 10.1016/j.trc.2013.03.010
    [22]
    R. A. Becker, R. Caceres, K. Hanson, J. M. Loh, S. Urbanek, A. Varshavsky, and C. Volinsky, “Route classification using cellular handoff patterns,” in Proc. 13th Int. Conf. Ubiquitous Computing, Beijing, China, 2011, pp. 123–132.
    [23]
    A. Janecek, D. Valerio, K. A. Hummel, F. Ricciato, and H. Hlavacs, “The cellular network as a sensor: from mobile phone data to real-time road traffic monitoring,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 5, pp. 2551–2572, Oct. 2015. doi: 10.1109/TITS.2015.2413215
    [24]
    Z. H. Rao, D. Y. Yang, and Z. Y. Duan, “Resident mobility analysis based on mobile-phone billing data,” Procedia - Soc. Behav. Sci., vol. 96, pp. 2032–2041, Nov. 2013. doi: 10.1016/j.sbspro.2013.08.229
    [25]
    M. S. Iqbal, C. F. Choudhury, P. Wang, and M. C. González, “Development of origin-destination matrices using mobile phone call data,” Transp. Res. Part C:Emerg. Technol., vol. 40, pp. 63–74, Mar. 2014. doi: 10.1016/j.trc.2014.01.002
    [26]
    M. G. Demissie, S. Phithakkitnukoon, T. Sukhvibul, F. Antunes, R. Gomes, and C. Bento, “Inferring passenger travel demand to improve urban mobility in developing countries using cell phone data: a case study of Senegal,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 9, pp. 2466–2478, Sept. 2016. doi: 10.1109/TITS.2016.2521830
    [27]
    J. L. Toole, S. Colak, B. Sturt, L. P. Alexander, A. Evsukoff, and M. C. González, “The path most traveled: travel demand estimation using big data resources,” Transp. Res. Part C:Emerg. Technol., vol. 58, pp. 162–177, Sept. 2015. doi: 10.1016/j.trc.2015.04.022
    [28]
    V. Aguiléra, S. Allio, V. Benezech, F. Combes, and C. Milion, “Using cell phone data to measure quality of service and passenger flows of Paris transit system,” Transp. Res. Part C:Emerg. Technol., vol. 43, pp. 198–211, Jun. 2014. doi: 10.1016/j.trc.2013.11.007
    [29]
    X. J. Ban, Y. W. Li, A. Skabardonis, and J. D. Margulici, “Performance evaluation of travel-time estimation methods for real-time traffic applications,” J. Intell. Transp. Syst., vol. 14, no. 2, pp. 54–67, May 2010. doi: 10.1080/15472451003719699
    [30]
    R. Ahas, A. Aasa, S. Silm, and M. Tiru, “Daily rhythms of suburban commuters’ movements in the Tallinn metropolitan area: case study with mobile positioning data,” Transp. Res. Part C:Emerg. Technol., vol. 18, no. 1, pp. 45–54, Feb. 2010. doi: 10.1016/j.trc.2009.04.011
    [31]
    J. C. Herrera, D. B. Work, R. Herring, X. G. Ban, Q. Jacobson, and A. M. Bayen, “Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment,” Transp. Res. Part C:Emerg. Technol., vol. 18, no. 4, pp. 568–583, Aug. 2010. doi: 10.1016/j.trc.2009.10.006
    [32]
    P. Nitsche, P. Widhalm, S. Breuss, N. Brändle, and P. Maurer, “Supporting large-scale travel surveys with smartphones - a practical approach,” Transp. Res. Part C:Emerg. Technol., vol. 43, pp. 212–221, Jun. 2014. doi: 10.1016/j.trc.2013.11.005
    [33]
    E. Tranos and D. Gertner, “Smart networked cities?” Innovation:Eur. J. Soc. Sci. Res., vol. 25, no. 2, pp. 175–190, Apr. 2012. doi: 10.1080/13511610.2012.660327
    [34]
    E. Tranos, J. Steenbruggen, and P. Nijkamp, “Mobile phone data and urban analysis: an exploratory space-time,” TI 2013-139/VIII, Jan. 2013.
    [35]
    S. Jiang, J. Ferreira, and M. C. Gonzalez, “Activity-based human mobility patterns inferred from mobile phone data: a case study of Singapore,” IEEE Trans. Big Data, vol. 3, no. 2, pp. 208–219, Jun. 2017. doi: 10.1109/TBDATA.2016.2631141
    [36]
    S. Jiang, M. C. González, and J. Ferreira, “Understanding the link between urban activity destinations and human travel patterns,” in Proc. 12th Int. Conf. Computers in Urban Planning and Urban Management, Lake Louise, Canada, 2011.
    [37]
    S. Jiang, J. Ferreira, and M. C. González, “Clustering daily patterns of human activities in the city,” Data Mining and Knowledge Discovery, vol. 25, no. 3, pp. 478–510, Apr. 2012. doi: 10.1007/s10618-012-0264-z
    [38]
    E. Thuillier, L. Moalic, S. Lamrous, and A. Caminada, “Clustering weekly patterns of human mobility through mobile phone data,” IEEE Trans. Mob. Comput., vol. 17, no. 4, pp. 817–830, Apr. 2018. doi: 10.1109/TMC.2017.2742953
    [39]
    H. Y. Wang, F. Calabrese, G. Di Lorenzo, and C. Ratti, “Transportation mode inference from anonymized and aggregated mobile phone call detail records,” in Proc. 13th IEEE Conf. Intelligent Trans. Systems, Funchal, Portugal, 2010, pp. 318–323.
    [40]
    F. Pinelli, R. Nair, F. Calabrese, M. Berlingerio, G. Di Lorenzo, and M. L. Sbodio, “Data-driven transit network design from mobile phone trajectories,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 6, pp. 1724–1733, Jun. 2016. doi: 10.1109/TITS.2015.2496783
    [41]
    A. Kuusika, K. Nilbeb, T. Mehinea, and R. Ahas, “Country as a free sample: the ability of Tourism events to generate repeat visits. Case study with mobile positioning data in Estonia”, Procedia-Social and Behavioral Sciences, vol. 148, pp. 262–270, 2014.
    [42]
    Z. P. Zhou, J. W. Yang, Y. Qi, and Y. F. Cai, “Support vector machine and back propagation neutral network approaches for trip mode prediction using mobile phone data,” IET Intell. Transp. Syst., vol. 12, no. 10, pp. 1220–1226, Nov. 2018. doi: 10.1049/iet-its.2018.5203
    [43]
    M. G. Demissie, S. Phithakkitnukoon, and L. Kattan, “Trip distribution modeling using mobile phone data: emphasis on intra-zonal trips,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 7, pp. 2605–2617, Jul. 2019. doi: 10.1109/TITS.2018.2868468
    [44]
    G. Zhong, X. Wan, J. Zhang, T. T. Yin, and B. Ran, “Characterizing passenger flow for a transportation hub based on mobile phone data,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 6, pp. 1507–1518, Jun. 2017.
    [45]
    M. Friedrich, K. Immisch, P. Jehlicka, T. Otterstätter, and J. Schlaich, “Generating origin-destination matrices from mobile phone trajectories,” Transp. Res. Record:J. Transp. Res. Board, vol. 2196, no. 1, pp. 93–101, Jan. 2010. doi: 10.3141/2196-10
    [46]
    N. Caceres, J. P. Wideberg, and F. G. Benitez, “Deriving origin destination data from a mobile phone network,” IET Intell. Transp. Syst., vol. 1, no. 1, pp. 15–26, Mar. 2007. doi: 10.1049/iet-its:20060020
    [47]
    A. Jahangiri and H. A. Rakha, “Applying machine learning techniques to transportation mode recognition using mobile phone sensor data,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 5, pp. 2406–2417, Oct. 2015. doi: 10.1109/TITS.2015.2405759
    [48]
    M. Q. Lv, L. Chen, X. J. Wu, and G. C. Chen, “A road congestion detection system using undedicated mobile phones,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 6, pp. 3060–3072, Dec. 2015. doi: 10.1109/TITS.2015.2426955
    [49]
    C. G. Kang, S. Sobolevsky, Y. Liu, and C. Ratti, “Exploring human movements in Singapore: a comparative analysis based on mobile phone and taxicab usages,” in Proc. 2nd ACM SIGKDD Int. Workshop on Urban Computing, Chicago, Illinois, 2013.
    [50]
    M. Thejaswini, P. Rajalakshmi, and U. B. Desai, “Novel sampling algorithm for human mobility-based mobile phone sensing,” IEEE Internet Things J., vol. 2, no. 3, pp. 210–220, Jun. 2015. doi: 10.1109/JIOT.2014.2388074
    [51]
    M. Ghahramani, M. C. Zhou, and C. T. Hon, “Mobile phone data analysis: a spatial exploration toward hotspot detection,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 1, pp. 351–362, Jan. 2019. doi: 10.1109/TASE.2018.2795241
    [52]
    M. Ghahramani, M. C. Zhou, and C. T. Hon, “Extracting significant mobile phone interaction patterns based on community structures,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 3, pp. 1031–1041, Mar. 2019. doi: 10.1109/TITS.2018.2836800
    [53]
    Y. X. Dong, N. V. Chawla, J. Tang, Y. Yang, and Y. Yang, “User modeling on demographic attributes in big mobile social networks,” ACM Trans. Inf. Syst., vol. 35, no. 4, pp. 35, Jul. 2017.
    [54]
    Y. Y. Qiao, Y. H. Cheng, J. Yang, J. J. Liu, and N. Kato, “A mobility analytical framework for big mobile data in densely populated area,” IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1443–1455, Feb. 2017. doi: 10.1109/TVT.2016.2553182
    [55]
    J. Lin, D. J. Yang, M. Li, J. Xu, and G. L. Xue, “Frameworks for privacy-preserving mobile crowdsensing incentive mechanisms,” IEEE Trans. Mob. Comput., vol. 17, no. 8, pp. 1851–1864, Aug. 2018. doi: 10.1109/TMC.2017.2780091
    [56]
    Y. Zhang, Q. J. Chen, and S. Zhong, “Privacy-preserving data aggregation in mobile phone sensing,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 5, pp. 980–992, May 2016. doi: 10.1109/TIFS.2016.2515513
    [57]
    R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, and M. Viroli, “A development approach for collective opportunistic edge-of-things services,” Inf. Sci., vol. 498, pp. 154–169, Sep. 2019. doi: 10.1016/j.ins.2019.05.058
    [58]
    J. Q. Liu, J. F. Wan, B. Zeng, Q. R. Wang, H. B. Song, and M. K. Qiu, “A scalable and quick-response software defined vehicular network assisted by mobile edge computing,” IEEE Commun. Mag., vol. 55, no. 7, pp. 94–100, Jul. 2017. doi: 10.1109/MCOM.2017.1601150
    [59]
    Z. J. Ding, X. L. Li, C. J. Jiang, and M. C. Zhou, “Objectives and state-of-the-art of location-based social network recommender systems,” ACM Comput. Surv., vol. 51, no. 1, pp. 18, Apr. 2018.
    [60]
    X. S. Lu, M. C. Zhou, L. Qi, and H. Y. Liu, “Clustering-algorithm-based rare-event evolution analysis via social media data,” IEEE Trans. Comput. Soc. Syst., vol. 6, no. 2, pp. 301–310, Apr. 2019. doi: 10.1109/TCSS.2019.2898774
    [61]
    X. S. Lu, M. C. Zhou, and K. Y. Wu, “A novel fuzzy logic-based text classification method for tracking rare events on twitter,” IEEE Trans. Syst., Man, Cybern.: Syst., DOI: 10.1109/TSMC.2019.2932436.
    [62]
    R. Kitchin, “Big data and human geography: opportunities, challenges and risks,” Dialogues Hum. Geogr., vol. 3, no. 3, pp. 262–267, Dec. 2013. doi: 10.1177/2043820613513388
    [63]
    H. T. Yuan, J. Bi, and M. C. Zhou, “Multiqueue scheduling of heterogeneous tasks with bounded response time in hybrid green IaaS clouds,” IEEE Trans. Ind. Informatics, vol. 15, no. 10, pp. 5404–5412, Oct. 2019. doi: 10.1109/TII.2019.2901518
    [64]
    H. T. Yuan, J. Bi, and M. C. Zhou, “Spatiotemporal task scheduling for heterogeneous delay-tolerant applications in distributed green data centers,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 4, pp. 1686–1697, Oct. 2019. doi: 10.1109/TASE.2019.2892480
    [65]
    H. T. Yuan, J. Bi, and M. C. Zhou, “Temporal task scheduling of multiple delay-constrained applications in green hybrid cloud,” IEEE Trans. Serv. Comput., 2018, DOI: 10.1109/TSC.2018.2878561.
    [66]
    H. T. Yuan, J. Bi, and M. C. Zhou, “Spatial Task scheduling for cost minimization in distributed green cloud data centers,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 2, pp. 729–740, Apr. 2019. doi: 10.1109/TASE.2018.2857206
    [67]
    W. L. Li, K. W. Liao, Q. He, and Y. N. Xia, “Performance-aware cost-effective resource provisioning for future grid IoT-cloud system,” J. Energy Eng., vol. 145, no. 5, Oct. 2019.
    [68]
    M. H. Ghahramani, M. C. Zhou, and C. T. Hon, “Toward cloud computing QoS architecture: analysis of cloud systems and cloud services,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 6–18, Jan. 2017. doi: 10.1109/JAS.2017.7510313
    [69]
    W. C. Xu, H. B. Zhou, N. Cheng, F. Lyu, W. S. Shi, J. Y. Chen, and X. M. Shen, “Internet of vehicles in big data era,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 19–35, Jan. 2018. doi: 10.1109/JAS.2017.7510736
    [70]
    M. Ghahramani, M. C. Zhou, and C. T. Hon, “Analysis of mobile phone data under a cloud computing framework,” in Proc. 14th IEEE Int. Conf. Networking, Sensing and Control, Calabria, Italy, 2017.
    [71]
    M. Ghahramani, M. C. Zhou, and C. T. Hon, “Spatio-temporal analysis of mobile phone data for interaction recognition,” in Proc. 15th IEEE Int. Conf. Networking, Sensing and Control, Zhuhai, China, 2018.
    [72]
    J. Du, C. X. Jiang, Z. Han, H. J. Zhang, S. Mumtaz, and Y. Ren, “Contract mechanism and performance analysis for data transaction in mobile social networks,” IEEE Trans. Network Sci. Eng., vol. 6, no. 2, pp. 103–115, Apr.–Jun. 2019. doi: 10.1109/TNSE.2017.2787746
    [73]
    D. L. Ferreira, B. A. A. Nunes, and K. Obraczka, “Scale-free properties of human mobility and applications to intelligent transportation systems,” IEEE Trans. Intelligent Transportation Systems, vol. 19, no. 11, pp. 3736–3748, Nov. 2018.
    [74]
    Q. Fan and N. Ansari, “On cost aware cloudlet placement for mobile edge computing,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 926–937, Jul. 2019. doi: 10.1109/JAS.2019.1911564
    [75]
    P. Y. Zhang, M. C. Zhou, and G. Fortino, “Security and trust issues in Fog computing: a survey,” Future Gener. Comput. Syst., vol. 88, pp. 16–27, Nov. 2018. doi: 10.1016/j.future.2018.05.008
    [76]
    S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Dendritic neuron model with effective learning algorithms for classification, approximation and prediction,” IEEE Trans. Neural Networks and Learning Systems, vol. 30, no. 2, pp. 601–614, 2019.
    [77]
    M. Ghahramani, Y. Qiao, M. C. Zhou, A. Ohagan, and J. Sweeney, “AI-based modeling and data-driven evaluation for smart manufacturing processes,” IEEE/CAA J. Autom. Sinica, 2020, DOI: 10.1109/JAS. 2020.1003114.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (1966) PDF downloads(199) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return