IEEE/CAA Journal of Automatica Sinica
Citation: | Luping Wang and Hui Wei, "Avoiding Non-Manhattan Obstacles Based on Projection of Spatial Corners in Indoor Environment," IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1190-1200, July 2020. doi: 10.1109/JAS.2020.1003117 |
[1] |
E. J. Gibson and R. D. Walk, “The visual cliff,” Sci. American, vol. 202, pp. 64–71, 1960.
|
[2] |
J. J. Koenderink, A. J. V. Doorn, and A. M. Kappers, “Pictorial surface attitude and local depth comparisons,” Percept. Psychophys, vol. 58, no. 2, pp. 163–173, 1996. doi: 10.3758/BF03211873
|
[3] |
Z. J. He and K. Nakayama, “Visual attention to surfaces in threedimensional space,” Proc. Natl. Acad. Sci. USA, vol. 92, no. 24, pp. 11155–11159, 1995. doi: 10.1073/pnas.92.24.11155
|
[4] |
H. Wei and L. P. Wang, “Visual navigation using projection of spatial rightangle in indoor environment,” IEEE Trans. Image Processing(TIP)
|
[5] |
H. Wei and L. P. Wang, “Understanding of indoor scenes based on projection of spatial rectangles,” Pattern Recognition, vol. 81, pp. 497–514, 2018. doi: 10.1016/j.patcog.2018.04.017
|
[6] |
L. Magerand and A. Del Bue, “Revisiting projective structure from motion: A robust and efficient incremental solution,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 430–443, 2020. doi: 10.1109/TPAMI.2018.2849973
|
[7] |
H. Mohamed, K. Nadaoka, and T. Nakamura, “Towards benthic habitat 3d mapping using machine learning algorithms and structures from motion photogrammetry,” Remote Sensing, vol. 12, no. 1, pp. 127, 2020. doi: 10.3390/rs12010127
|
[8] |
Y. S. Hung and P. B. Zhang, “An Articulated deformable structure approach to human motion segmentation and shape recovery from an image sequence,” IET Computer Vision, vol. 13, no. 3, pp. 267–276, 2018. doi: 10.1049/iet-cvi.2018.5365
|
[9] |
K. Sun and W. B. Tao, “A center-driven image set partition algorithm for efficient structure from motion,” Inf. Sci., vol. 479, pp. 101–115, 2019. doi: 10.1016/j.ins.2018.11.055
|
[10] |
M. R. U. Saputra, A. Markham, and N. Trigoni, “Visual SLAM and structure from motion in dynamic environments: A survey,” ACM Comput. Surv., vol. 51, no. 2, pp. 37: 1–37: 36, 2018.
|
[11] |
S. Hong and J. Kim, “Selective image registration for efficient visual SLAM on planar surface structures in underwater environment,” Auton. Robots, vol. 43, no. 7, pp. 1665–1679, 2019. doi: 10.1007/s10514-018-09824-1
|
[12] |
S. P. Li, T. Zhang, X. Gao, D. Wang, and Y. Xian, “Semi-direct monocular visual and visual-inertial SLAM with loop closure detection,” Robotics and Autonomous Systems, vol. 112, pp. 201–210, 2019. doi: 10.1016/j.robot.2018.11.009
|
[13] |
L. H. Xiao, J. G. Wang, X. S. Qiu, Z. Rong, and X. D. Zou, “Dynamic-SLAM: Semantic monocular visual localization and mapping based on deep learning in dynamic environment,” Robotics and Autonomous Systems, vol. 117, pp. 1–16, 2019. doi: 10.1016/j.robot.2019.03.012
|
[14] |
R. H. Li, S. Wang, and D. B. Gu, “Ongoing evolution of visual SLAM from geometry to deep learning: Challenges and opportunities,” Cognitive Computation, vol. 10, no. 6, pp. 875–889, 2018. doi: 10.1007/s12559-018-9591-8
|
[15] |
Y. Wei, J. Yang, C. Gong, S. Chen, and J. J. Qian, “Obstacle detection by fusing point clouds and monocular image,” Neural Processing Letters, vol. 49, no. 3, pp. 1007–1019, 2019. doi: 10.1007/s11063-018-9861-1
|
[16] |
A. Saxena, M. Sun, and A. Y. Ng, “Make3d: Depth perception from a single still image,” AAAI, vol. 3, pp. 1571–1576, 2008.
|
[17] |
A. Saxena, M. Sun, and A. Y. Ng, “Learning 3-d scene structure from a single still image,” in Proc. 11th IEEE Int. Conf. Computer Vision. IEEE. pp. 1–8, 2007.
|
[18] |
E. Delage, L. Honglak, and A. Y. Ng, “A dynamic bayesian network model for autonomous 3d reconstruction from a single indoor image,” CVPR, vol. 2, pp. 2418–2428, 2006.
|
[19] |
B. Liu, S. Gould, and D. Koller, “Single image depth estimation from predicted semantic labels,” CVPR, vol. 119, no. 5, pp. 1253–1260, 2010.
|
[20] |
A. Shariati, B. Pfrommer, and C. J. Taylor, “Simultaneous localization and layout model selection in Manhattan worlds,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 950–957, 2019. doi: 10.1109/LRA.2019.2893417
|
[21] |
J. Straub, O. Freifeld, G. Rosman, J. J. Leonard, and J. W. F. III, “The Manhattan frame model – Manhattan world inference in the space of surface normals,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 1, pp. 235–249, 2018. doi: 10.1109/TPAMI.2017.2662686
|
[22] |
L. D. Pero, J. Y. Guan, E. Brau, J. Schlecht, and K. Barnard, “Sampling bedrooms,” CVPR, vol. 1, pp. 2009–2016, 2011.
|
[23] |
L. D. Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hartley, and K. Barnard, “Bayesian geometric modeling of indoor scenes,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition. IEEE, pp. 2719–2726, 2012.
|
[24] |
L. D. Pero, J. Bowdish, B. Kermgard, E. Hartley, and K. Barnard, “Understanding Bayesian rooms using composite 3d object models,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition. IEEE, pp. 153–160, 2013.
|
[25] |
D. C. Lee, M. Hebert, and T. Kanade, “Geometric reasoning for single image structure recovery,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition. IEEE, pp. 2136–2143, 2009.
|
[26] |
S. X. Yu, H. Zhang, and J. Malik, “Inferring spatial layout from a single image via depth-ordered grouping,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops. IEEE, pp. 1–7, 2008.
|
[27] |
J. Li, C. Yuce, R. Klein, and A. Yao, “A two-streamed network for estimating fine-scaled depth maps from single RGB images,” Computer Vision and Image Understanding, vol. 186, pp. 25–36, 2019. doi: 10.1016/j.cviu.2019.06.002
|
[28] |
S. H. Ding, Q. Zhai, Y. Li, J. D. Zhu, Y. F. Zheng, and D. Xuan, “Simultaneous body part and motion identification for human-following robots,” Pattern Recognition, vol. 50, pp. 118–130, 2016. doi: 10.1016/j.patcog.2015.08.020
|
[29] |
Z. Y. Jia, A. Gallagher, A. Saxena, and T. Chen, “3d-based reasoning with blocks, support, and stability,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition. IEEE, pp. 1–8, 2013.
|
[30] |
D. Lee, A. Gupta, M. Hebert, and T. Kanade, “Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces,” NIPS, pp. 1288–1296, 2010.
|
[31] |
V. Hedau, D. Hoiem, and D. Forsyth, “Thinking inside the box: Using appearance models and context based on room geometry,” in Proc. European Conf. Computer Vision: Part VI. Berlin, Heidelberg, Germany: Springer, pp. 224–237, 2010.
|
[32] |
S. Dasgupta, K. Fang, K. Chen, and S. Savarese, “Delay: Robust spatial layout estimation for cluttered indoor scenes,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition. IEEE, pp. 616–624, 2016.
|
[33] |
C. H. Zou, A. Colburn, Q. Shan, and D. Hoiem, “Layoutnet: Reconstructing the 3d room layout from a single rgb image,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018, pp. 2051–2059.
|
[34] |
Y. Z. Ren, S. W. Li, C. Chen, and C.-C. J. Kuo, “A coarse-to-fine indoor layout estimation (CFILE) method,” in Proc. Asian Conf. Computer Vision, Springer, Cham, pp. 36–51, 2016.
|
[35] |
P. Miraldo, F. Eiras, and S. Ramalingam, “Analytical modeling of vanishing points and curves in catadioptric cameras,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018, pp. 2012–2021.
|
[36] |
H. Howard-Jenkins, S. Li, and V. Prisacariu, “Thinking outside the box: Generation of unconstrained 3d room layouts,” in Proc. Asian Conf. Computer Vision. Perth, Australia: Springer, 2018, pp. 432–448.
|
[37] |
X. T. Li, S. F. Liu, K. Kim, X. L. Wang, M. H. Yang, and J. Kautz, “Putting humans in a scene: Learning affordance in 3d indoor environments,” in Proc. IEEE Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019, pp. 12368–12376.
|
[38] |
A. Atapour-Abarghouei and T. P. Breckon, “Veritatem dies aperit – temporally consistent depth prediction enabled by a multi-task geometric and semantic scene understanding approach,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019, pp. 3373–3384.
|
[39] |
M. H. Zhai, S. Workman, and N. Jacobs, “Detecting vanishing points using global image context in a non-Manhattanworld,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 5657–5665.
|
[40] |
J. Lee and K. Yoon, “Joint estimation of camera orientation and vanishing points from an image sequence in a non-Manhattan world,” Int. J. Computer Vision, vol. 127, no. 10, pp. 1426–1442, 2019. doi: 10.1007/s11263-019-01196-y
|
[41] |
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik “From contours to regions: An empirical evaluation,” in Proc. Asian Conf. Computer Vision, Springer, Cham, pp. 2294–2301, 2009.
|
[42] |
V. Hedau, D. Hoiem, and D. Forsyth, “Recovering the spatial layout of cluttered rooms,” In Proc. 12th IEEE Int. Conf. Computer Vision, Kyoto, Japan: IEEE, pp. 1849–1856, 2009.
|
[43] |
A. Mallya and S. Lazebnik, “Learning informative edge maps for indoor scene layout prediction,” In Proc. IEEE Int. Conf. Computer Vision. Santiago, Chile: IEEE, pp. 936–944, 2015.
|
[44] |
Y. Zhang, F. Yu, S. Song, P. Xu, A. Seff, and J. Xiao, Largescale Scene Understanding Challenge: Room Layout Estimation, 2016.
|