IEEE/CAA Journal of Automatica Sinica
Citation: | Guangyuan Pan, Liping Fu, Qili Chen, Ming Yu and Matthew Muresan, "Road Safety Performance Function Analysis With Visual Feature Importance of Deep Neural Nets," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 735-744, May 2020. doi: 10.1109/JAS.2020.1003108 |
[1] |
U.S. Department of Transportation, Federal Highway Administration Research and Technology, [Online]. Available: https://www.fhwa.dot.gov/research/publications/technical, 2020.
|
[2] |
U.S. Department of Transportation, Highway Safety Manual (HSM), American Association of State Highway and Transportation Officials (AASHTO), Washington, DC, USA, 2010.
|
[3] |
J. Aguero-Valverde and P. P. Jovanis, “Analysis of road crash frequency with spatial models,” J. Transportation Research Board, vol. 2061, no. 1, pp. 55–63, Jan. 2008. doi: 10.3141/2061-07
|
[4] |
V. Shankar, F. Mannering, and W. Barfield, “Effect of roadway geometrics and environmental factors on rural freeway accident frequencies,” Accident Analysis &Prevention, vol. 27, no. 3, pp. 371–389, 1995.
|
[5] |
R. D. Connors, M. Maher, A. Wood, and L. Mountain, “Methodology for fitting and updating predictive accident models with trend,” Accident Analysis and Prevention, vol. 56, pp. 82–94, Jul. 2013. doi: 10.1016/j.aap.2013.03.009
|
[6] |
S. P. Miaou and D. Lord, “Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods,” J. Transportation Research Board, vol. 1840, pp. 31–40, Jan. 2003. doi: 10.3141/1840-04
|
[7] |
M. Abdel-Aty and K. Haleem, “Analyzing angle crashes at unsignalized intersections using machine learning techniques,” Accident Analysis &Prevention, vol. 43, no. 1, pp. 461–470, Jan. 2011.
|
[8] |
L. Y. Chang, “Analysis of freeway accident frequencies: negative binomial regression versus artificial neural network,” Safety Science, vol. 43, no. 8, pp. 541–557, 2005. doi: 10.1016/j.ssci.2005.04.004
|
[9] |
L. Thakali, L. S. Fu, and T. Chen, “Model-based versus data-driven approach for road safety analysis: do more data help?” Transportation Research Board 95th Annual Meeting, pp. 3516–3531, 2016.
|
[10] |
I. Goodfellow, B. Yoshua, and C. Aaron, Deep Learning, Cambridge: MIT Press, vol. 1. 2016.
|
[11] |
G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, Jul. 2006. doi: 10.1162/neco.2006.18.7.1527
|
[12] |
G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006. doi: 10.1126/science.1127647
|
[13] |
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015. doi: 10.1038/nature14539
|
[14] |
K. He and J. Sun, “Convolutional neural networks at constrained time cost,” in Proc. Conf. on Computer Vision and Pattern Recognition, pp. 5353–5360, Jun. 2015.
|
[15] |
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “OverFeat: integrated recognition, localization and detection using convolutional networks,” in Proc. Int. Conf. on Learning Representations, Feb. 2014.
|
[16] |
A. G. Howard, “Some improvements on deep convolutional neural network based image classification,” in Proc. Int. Conf. on Learning Representations, Oct. 2014.
|
[17] |
Z. Chen-Mccaig, R. Hoseinnezhad, and A. Hadiasha, “Convolutional neural networks for texture recognition using transfer learning,” in Proc. IEEE Int. Conf. on Control, Autom. and Information Sciences, pp. 187–192, Oct. 2017.
|
[18] |
F. C. Soon, H. Y. Khaw, J. H. Chuah, and J. Kanesan, “Hyper-parameters optimization of deep CNN architecture for vehicle logo recognition,” IET Intelligent Transport Systems, vol. 12, no. 8, pp. 939–946, Jul. 2018. doi: 10.1049/iet-its.2018.5127
|
[19] |
G. Pan, L. Fu, L. Thakali, M. Muresan, and M. Yu. “An improved deep belief network model for road safety analyses,” in Proc. 97th Transportation Research Board Annual Meeting, no. 18-00835, Dec. 2018.
|
[20] |
G. Y. Pan, L. P. Fu, and L. Thakali, “Development of a global road safety performance function using deep neural networks,” Int. J. Transportation Science &Technology, vol. 6, no. 3, pp. 159–173, Sep. 2017.
|
[21] |
A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: High confidence predictions for unrecognizable images,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 427–436, Apr. 2015.
|
[22] |
I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv: 1412.6572, Mar. 2015.
|
[23] |
N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical black-box attacks against deep learning systems using adversarial examples,” arXiv preprint arXiv: 1602.02697, Mar. 2017.
|
[24] |
N. Narodytska and S. P. Kasiviswanathan, “Simple black-box adversarial attacks on deep neural networks,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, pp. 6–14, Jul. 2017.
|
[25] |
R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, “A survey of methods for explaining black box models,” ACM Computing Surveys (CSUR)
|
[26] |
W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K. R. Müller, “Evaluating the visualization of what a deep neural network has learned,” IEEE Trans. Neural Networks and Learning Systems, vol. 28, no. 11, pp. 2660–2673, Sep. 2015.
|
[27] |
A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised feature learning,” in Proc. Int. Conf. on Artificial Intelligence and Statistics, pp. 215–223, 2011.
|
[28] |
R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural networks via information,” arXiv preprint arXiv: 1703.00810, Apr. 2017.
|
[29] |
P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,” in Proc. 34th Int. Conf. on Machine Learning, pp. 1885–1894, Mar. 2017.
|
[30] |
J. Thiagarajan, B. Kailkhura, P. Sattigeri, and K. Ramamurthy, “Tree-View: peeking into deep neural networks via feature-space partitioning,” arXiv preprint arXiv: 1611.07429, Nov. 2016.
|
[31] |
Y. Lee, A. Scolari, B. Chun, M. D. Santambrogio, M. Weimer, and M. Interlandi, “PRETZEL: opening the black box of machine learning prediction serving systems”, in Proc. 13th USENIX Symposium on Operating Systems Design and Implementation, pp. 611–626, Oct. 2018.
|
[32] |
M. Honegger, “Shedding light on black box machine learning algorithms: development of an axiomatic framework to assess the auality of aethods that explain individual predictions”, arXiv preprint arXiv: 1808.05054, Aug. 2018.
|
[33] |
D. Castelvecchi, “Can we open the black box of AI?” Nature, vol. 538, no. 7623, pp. 20–23, Oct. 2016. doi: 10.1038/538020a
|
[34] |
P. Voosen, “How AI detectives are cracking open the black box of deep learning,” Science, vol. 357, no. 6346, pp. 22–28, 2017. doi: 10.1126/science.357.6346.22
|
[35] |
A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features through propagating activation differences”, arXiv preprint arXiv: 1704.02685, Oct. 2019.
|
[36] |
M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in Proc. European Conf. on Computer Vision, pp. 818–833, Nov. 2014.
|
[37] |
M. Shang, X. Luo, Z. Liu, J. Chen, Y. Yuan, and M. Zhou, “Randomized latent factor model for high-dimensional and sparse matrices from industrial applications,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 131–141, Jan. 2019. doi: 10.1109/JAS.2018.7511189
|
[38] |
X. Luo, M. Zhou, S. Li, and M. Shang, “An inherently nonnegative latent factor model for high-dimensional and sparse matrices from industrial applications,” IEEE Trans. Industrial Informatics, vol. 14, no. 5, pp. 2011–2022, Oct. 2017.
|