IEEE/CAA Journal of Automatica Sinica
Citation: | Zhaorong Zhang and Minyue Fu, "Convergence Rate Analysis of Gaussian Belief Propagation for Markov Networks," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 668-673, May 2020. doi: 10.1109/JAS.2020.1003105 |
[1] |
J. Pearl, Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, 1988.
|
[2] |
Y. Weiss and W. T. Freeman, “Correctness of belief propagation in Gaussian graphical models of arbitrary topology,” Neural Computation, vol. 13, no. 10, pp. 2173–2200, 2001. doi: 10.1162/089976601750541769
|
[3] |
D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-sums and belief propagation in Gaussian graphical models,” J. Machine Learning Research, vol. 7, pp. 2031–2064, 2006.
|
[4] |
D. Marelli and M. Fu, “Distributed weighted least-squares estimation with fast convergence for large-scale systems,” Automatica, vol. 51, pp. 27–39, 2015. doi: 10.1016/j.automatica.2014.10.077
|
[5] |
C. C. Moallemi and B. Van Roy, “Convergence of min-sum message-passing for quadratic optimization,” IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2413–2423, 2009. doi: 10.1109/TIT.2009.2016055
|
[6] |
C. C. Moallemi and B. Van Roy, “Convergence of min-sum message-passing for convex optimization,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 2041–2050, 2010. doi: 10.1109/TIT.2010.2040863
|
[7] |
Q. Su and Y-C. Wu, “Convergence analysis of the variance in Gaussian belief propagation,” IEEE Trans. Signal Processing, vol. 62, no. 19, pp. 5119–5131, 2014. doi: 10.1109/TSP.2014.2345635
|
[8] |
Q. Su and Y-C. Wu, “On convergence conditions of Gaussian belief propagation,” IEEE Trans. Signal Processing, vol. 63, no. 5, pp. 1144–1155, 2015. doi: 10.1109/TSP.2015.2389755
|
[9] |
O. Shental, P. H. Siegel, J. K. Wolf, D. Bickson, and D. Dolev, “Gaussian belief propagation solver for systems of linear equations,” in Proc. IEEE Int. Symp. Information Theory, vol. 4, pp. 1863–1867, 2008, Toronto, Canada.
|
[10] |
X.-M. Zhang, Q.-L. Han, X. H. Ge, D. R. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: a survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2020. doi: 10.1109/JAS.2019.1911861
|
[11] |
H. F. Niu, A. Sahoo, C. Bhowmick, and S. Jagannathan, “An optimal hybrid learning approach for attack detection in linear networked control systems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1404–1416, Nov. 2019.
|
[12] |
B. Xia, W. H. Yuan, N. Xie, and C. H. Li, “A novel statistical manifold algorithm for position estimation,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1513–1518, Nov. 2019.
|
[13] |
X. Tan and J. Li, “Computationally efficient sparse Bayesian learning via belief propagation,” IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2010–2021, Apr. 2010. doi: 10.1109/TSP.2010.2040683
|
[14] |
N. Ruozzi and S. Tatikonda, “Message-passing algorithms for quadratic minimization,” J. Machine Learning Research, vol. 14, pp. 2287–2314, Aug. 2013.
|
[15] |
N. Ruozzi and S. Tatikonda, “A new approach to Laplacian solvers and flow problems,” J. Machine Learning Research, vol. 20, pp. 1–37, Feb. 2019.
|
[16] |
B. Cseke and T. M. Heskes, “Bounds on the Bethe free energy for Gaussian networks.” in Proc. 24th Conf. Uncertainty in Artificial Intelligence, 2008, pp. 97–104.
|
[17] |
E. G. Boman, D. Chen, O. Parekh, and S. Toledo, “On factor width and symmetric H-matrices,” Linear Algebra and its Applications, vol. 405, pp. 239–248, 2005. doi: 10.1016/j.laa.2005.03.029
|
[18] |
Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, 2003.
|