A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 3
Apr.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Younes Solgi, Alireza Fatehi and Ala Shariati, "Non-Monotonic Lyapunov-Krasovskii Functional Approach to Stability Analysis and Stabilization of Discrete Time-Delay Systems," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 752-763, May 2020. doi: 10.1109/JAS.2020.1003102
Citation: Younes Solgi, Alireza Fatehi and Ala Shariati, "Non-Monotonic Lyapunov-Krasovskii Functional Approach to Stability Analysis and Stabilization of Discrete Time-Delay Systems," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 752-763, May 2020. doi: 10.1109/JAS.2020.1003102

Non-Monotonic Lyapunov-Krasovskii Functional Approach to Stability Analysis and Stabilization of Discrete Time-Delay Systems

doi: 10.1109/JAS.2020.1003102
More Information
  • In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized to relax the monotonic requirement of the Lyapunov-Krasovskii theorem. In this regard, the Lyapunov-Krasovskii functional is allowed to increase in a few steps, while being forced to be overall decreasing. As a result, it relays on a larger class of Lyapunov-Krasovskii functionals to provide stability of a state-delay system. To this end, using the non-monotonic Lyapunov-Krasovskii theorem, new sufficient conditions are derived regarding linear matrix inequalities (LMIs) to study the global asymptotic stability of state-delay systems. Moreover, new stabilization conditions are also proposed for time-delay systems in this article. Both simulation and experimental results on a pH neutralizing process are provided to demonstrate the efficacy of the proposed method.

     

  • loading
  • [1]
    W. Michiels and S. I. Niculescu, Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach. 2nd ed. Philadelphia, USA: SIAM, 2014.
    [2]
    J. Yoneyama and T. Tsuchiya, “New delay-dependent conditions on robust stability and stabilisation for discrete-time systems with time-delay,” Int. J. Syst. Sci., vol. 39, no. 10, pp. 1033–1040, Jul. 2008. doi: 10.1080/00207720802088116
    [3]
    S. Cong, “On exponential stability conditions of linear neutral stochastic differential systems with time-varying delay,” Int. J. Robust Nonlinear Control, vol. 23, no. 11, pp. 1265–1276, Jul. 2013. doi: 10.1002/rnc.2818
    [4]
    J. Chen, P. L. Fu, S. I. Niculescu, and Z. H. Guan, “An eigenvalue perturbation approach to stability analysis, part I: eigenvalue series of matrix operators,” SIAM J. Control Optim., vol. 48, no. 8, pp. 5564–5582, Aug. 2010. doi: 10.1137/080741707
    [5]
    B. Liu and H. J. Marquez, “Razumikhin-type stability theorems for discrete delay systems,” Automatica, vol. 43, no. 7, pp. 1219–1225, Jul. 2007. doi: 10.1016/j.automatica.2006.12.032
    [6]
    E. Fridman, U. Shaked, and K. Liu, “New conditions for delay-derivative-dependent stability,” Automatica, vol. 45, no. 11, pp. 2723–2727, Nov. 2009. doi: 10.1016/j.automatica.2009.08.002
    [7]
    T. H. Lee and J. H. Park, “A novel Lyapunov functional for stability of time-varying delay systems via matrix-refined-function,” Automatica, vol. 80, pp. 239–242, Jun. 2017. doi: 10.1016/j.automatica.2017.02.004
    [8]
    T. Shi, H. Y. Su, and J Chu, “On stability and stabilisation for uncertain stochastic systems with time-delay and actuator saturation,” Int. J. Syst. Sci., vol. 41, no. 5, pp. 501–509, Mar. 2010. doi: 10.1080/00207720903072282
    [9]
    É. Gyurkovics, K. Kiss, I. Nagy, and T. Takács, “Multiple summation inequalities and their application to stability analysis of discrete-time delay systems,” J. Franklin Inst., vol. 354, no. 1, pp. 123–144, Jan. 2017. doi: 10.1016/j.jfranklin.2016.10.006
    [10]
    X. W. Li and H. J. Gao, “A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis,” IEEE Trans. Autom. Control, vol. 56, no. 9, pp. 2172–2178, Sep. 2011. doi: 10.1109/TAC.2011.2146850
    [11]
    H. Gao, J. Lam, C. Wang, and Y. Wang, “Delay-dependent output-feedback stabilization of discrete-time systems with time-varying state delay,” IEE Proc. - Control Theory Appl., vol. 151, no. 6, pp. 691–698, Nov. 2004. doi: 10.1049/ip-cta:20040822
    [12]
    M. Wu, Y. He, and J. H. She, “New delay-dependent stability criteria and stabilizing method for neutral systems,” IEEE Trans. Autom. Control, vol. 49, no. 12, pp. 2266–2271, Dec. 2004. doi: 10.1109/TAC.2004.838484
    [13]
    C. K. Zhang, Y. He, L. Jiang, M. Wu, and H. B Zeng, “Summation inequalities to bounded real lemmas of discrete-time systems with time-varying delay,” IEEE Trans. Autom. Control, vol. 62, no. 5, pp. 2582–2588, May 2017. doi: 10.1109/TAC.2016.2600024
    [14]
    Y. He, M. Wu, G. P. Liu, and J. H. She, “Output feedback stabilization for a discrete-time system with a time-varying delay,” IEEE Trans. Autom. Control, vol. 53, no. 10, pp. 2372–2377, Nov. 2008. doi: 10.1109/TAC.2008.2007522
    [15]
    H. Y. Shao and Q. L. Han, “New stability criteria for linear discrete-time systems with interval-like time-varying delays,” IEEE Trans. Autom. Control, vol. 56, no. 3, pp. 619–625, Mar. 2011. doi: 10.1109/TAC.2010.2095591
    [16]
    P. T. Nam, P. N. Pathirana, and H. Trinh, “Discrete wirtinger-based inequality and its application,” J. Franklin Inst., vol. 352, no. 5, pp. 1893–1905, May 2015. doi: 10.1016/j.jfranklin.2015.02.004
    [17]
    A. Seuret, F. Gouaisbaut, and E. Fridman, “Stability of discrete-time systems with time-varying delays via a novel summation inequality,” IEEE Trans. Autom. Control, vol. 60, no. 10, pp. 2740–2745, Oct. 2015. doi: 10.1109/TAC.2015.2398885
    [18]
    C. K. Zhang, Y. He, L. Jiang, and M. Wu, “An improved summation inequality to discrete-time systems with time-varying delay,” Automatica, vol. 74, pp. 10–15, Dec. 2016. doi: 10.1016/j.automatica.2016.07.040
    [19]
    X. M. Zhang and Q. L. Han, “Abel lemma-based finite-sum inequality and its application to stability analysis for linear discrete time-delay systems,” Automatica, vol. 57, pp. 199–202, Jul. 2015. doi: 10.1016/j.automatica.2015.04.019
    [20]
    M. Wu, Y. He, and J. H. She, Stability Analysis and Robust Control of Time-Delay Systems. Berlin, Germany: Springer, 2010.
    [21]
    B. Y. Zhang, S. Y. Xu, and Y. Zou, “Improved stability criterion and its applications in delayed controller design for discrete-time systems,” Automatica, vol. 44, no. 11, pp. 2963–2967, Nov. 2008. doi: 10.1016/j.automatica.2008.04.017
    [22]
    A. Shariati and Q. Zhao, “Robust leader-following output regulation of uncertain multi-agent systems with time-varying delay,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 807–817, Jul. 2018. doi: 10.1109/JAS.2018.7511141
    [23]
    Z. Q. Zuo, H. C. Li, and Y. J. Wang, “New criterion for finite-time stability of linear discrete-time systems with time-varying delay,” J. Franklin Inst., vol. 350, no. 9, pp. 2745–2756, Nov. 2013. doi: 10.1016/j.jfranklin.2013.06.017
    [24]
    S. B. Stojanovic, D. L. Debeljkovic, and M. A. Misic, “Finite-time stability for a linear discrete-time delay systems by using discrete convolution: an LMI approach,” Int. J. Control Autom. Syst., vol. 14, no. 4, pp. 1144–1151, Aug. 2016. doi: 10.1007/s12555-014-0447-z
    [25]
    A. A. Ahmadi and P. A. Parrilo, “Non-monotonic lyapunov functions for stability of discrete time nonlinear and switched systems,” in Proc. 47th IEEE Conf. Decision and Control, Cancun, Mexico, 2008, pp. 614–621.
    [26]
    D. Aeyels and J. Peuteman, “A new asymptotic stability criterion for nonlinear time-variant differential equations,” IEEE Trans. Autom. Control, vol. 43, no. 7, pp. 968–971, Jul. 1998. doi: 10.1109/9.701102
    [27]
    A. Kruszewski, R. Wang, and T. M. Guerra, “Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time ts fuzzy models: a new approach,” IEEE Trans. Autom. Control, vol. 53, no. 2, pp. 606–611, Mar. 2008. doi: 10.1109/TAC.2007.914278
    [28]
    S. Fakhimi Derakhshan and A. Fatehi, “Non-monotonic Lyapunov functions for stability analysis and stabilization of discrete time Takagi-Sugeno fuzzy systems,” Int. J. Innov. Comput.,Inf. Control, vol. 10, no. 4, pp. 1567–1586, Aug. 2014.
    [29]
    S. Fakhimi Derakhshan, A. Fatehi, and M. G. Sharabiany, “Nonmonotonic observer-based fuzzy controller designs for discrete time T-S fuzzy systems via LMI,” IEEE Trans. Cybernet., vol. 44, no. 12, pp. 2557–2567, Dec. 2014. doi: 10.1109/TCYB.2014.2310591
    [30]
    S. Fakhimi Derakhshan and A. Fatehi, “Non-monotonic robust H_2 fuzzy observer-based control for discrete time nonlinear systems with parametric uncertainties,” Int. J. Syst. Sci., vol. 46, no. 12, pp. 2134–2149, Sep. 2015. doi: 10.1080/00207721.2013.854941
    [31]
    Y. Xie, J. W. Wen, L. Peng, and H. Wang, “Robust H control of average dwell time switching systems via non-monotonic lyapunov function approach,” in Proc. 3rd IEEE Int. Conf. Control Science and Systems Engineering, Beijing, China, 2017, pp. 16–21.
    [32]
    Y. Xie, J. W. Wen, S. K. Nguang, and L. Peng, “Stability, l2-gain, and robust H control for switched systems via N-step-ahead Lyapunov function approach,” IEEE Access, vol. 5, pp. 26400–26408, 2017. doi: 10.1109/ACCESS.2017.2771455
    [33]
    Y. J. Chen, M. Tanaka, K. Inoue, H. Ohtake, K. Tanaka, T. M. Guerra, A. Kruszewski, and H. O. Wang, “A nonmonotonically decreasing relaxation approach of Lyapunov functions to guaranteed cost control for discrete fuzzy systems,” IET Control Theory Appl., vol. 8, no. 16, pp. 1716–1722, Nov. 2014. doi: 10.1049/iet-cta.2013.1132
    [34]
    A. Nasiri, S. K. Nguang, A. Swain, and D. J. Almakhles, “Robust output feedback controller design of discrete-time Takagi–Sugeno fuzzy systems: a non-monotonic Lyapunov approach,” IET Control Theory Appl., vol. 10, no. 5, pp. 545–553, Mar. 2016. doi: 10.1049/iet-cta.2015.0750
    [35]
    T. M. Guerra, A. Kruszewski, and M. Bernal, “Control law proposition for the stabilization of discrete Takagi-Sugeno models,” IEEE Trans. Fuzzy Syst., vol. 17, no. 3, pp. 724–731, Jun. 2009. doi: 10.1109/TFUZZ.2008.928602
    [36]
    A. Nasiri, S. K. Nguang, A. Swain, and D. J. Almakhles, “Reducing conservatism in an H robust state-feedback control design of T-S fuzzy systems: a nonmonotonic approach,” IEEE Trans. Fuzzy Syst., vol. 26, no. 1, pp. 386–390, Feb. 2018. doi: 10.1109/TFUZZ.2017.2649580
    [37]
    J. W. Wen, S. K. Nguang, P. Shi, and A. Nasiri, “Robust H control of discrete-time nonhomogenous markovian jump systems via multistep lyapunov function approach,” IEEE Trans. Syst.,Man,Cybernet.:Syst., vol. 47, no. 7, pp. 1439–1450, Jul. 2017. doi: 10.1109/TSMC.2016.2617621
    [38]
    J. E. Normey-Rico and E. F. Camacho, Control of Dead-Time Processes. London, UK: Springer, 2007.
    [39]
    S. Das, K. Halder, and A Gupta, “Delay handling method in dominant pole placement based pid controller design,” IEEE Trans. Ind. Inf., vol. 16, no. 2, pp. 980–991, Feb. 2020. doi: 10.1109/TII.2019.2918252
    [40]
    J. Lofberg, “YALMIP: a toolbox for modeling and optimization in MATLAB,” in Proc. IEEE Int. Conf. Robotics and Automation, New Orleans, USA, 2004, pp. 284–289.
    [41]
    S. Y. Xu, J. Lam, B. Y. Zhang, and Y. Zou, “A new result on the delay-dependent stability of discrete systems with time-varying delays,” Int. J. Robust Nonlinear Control, vol. 24, no. 16, pp. 2512–2521, Nov. 2014. doi: 10.1002/rnc.3006
    [42]
    C. Peng, “Improved delay-dependent stabilisation criteria for discrete systems with a new finite sum inequality,” IET Control Theory Appl., vol. 6, no. 3, pp. 448–453, Feb. 2012. doi: 10.1049/iet-cta.2011.0109
    [43]
    O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, and E. J. Cha, “Improved robust stability criteria for uncertain discrete-time systems with interval time-varying delays via new zero equalities,” IET Control Theory Appl., vol. 6, no. 16, pp. 2567–2575, Nov. 2012. doi: 10.1049/iet-cta.2012.0257
    [44]
    M. Sadeghassadi, A. Fatehi, A. Khaki Sedigh, and S. M. Hosseini, “On the structural optimization of a neural network model predictive controller,” Ind. Eng. Chem. Res., vol. 52, no. 1, pp. 394–407, 2013.
    [45]
    D. Shaghaghi, A. Fatehi, and A. Khaki-Sedigh, “Multi-linear model set design based on the nonlinearity measure and H-gap metric,” ISA Trans., vol. 68, pp. 1–13, May 2017. doi: 10.1016/j.isatra.2017.01.021
    [46]
    K. J. Åström, and T. Hägglund, PID Controllers: Theory, Design, and Tuning. 2nd ed. N.C., USA: Int. Society for Measurement and Control, 1995.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (1505) PDF downloads(76) Cited by()

    Highlights

    • A novel less conservative non-monotonic Lyapunov-Krasovskii stability approach is proposed for stability analysis of discrete time-delay systems.
    • A novel stabilization algorithm is derived based on the introduced non-monotonic stability condition.
    • Linear Matrix Inequalities (LMI) and Iterative LMI based nonlinear minimization are used to obtain the Lyapunov-Krasovskii functional and the controller respectively.
    • The proposed method is experimentally evaluated on a pH neutralization process.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return