IEEE/CAA Journal of Automatica Sinica
Citation: | Hao Zhang, Yongdan Li, Zhihan Lv, Arun Kumar Sangaiah and Tao Huang, "A Real-Time and Ubiquitous Network Attack Detection Based on Deep Belief Network and Support Vector Machine," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 790-799, May 2020. doi: 10.1109/JAS.2020.1003099 |
[1] |
P. Y. Zhang, S. Shu, and M. C. Zhou, “An online fault detection model and strategies based on SVM-grid in clouds,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 445–456, Mar. 2018. doi: 10.1109/JAS.2017.7510817
|
[2] |
D. E. Denning, “An intrusion-detection model,” in Proc. IEEE Symposium on Security and Privacy, Oakland, USA, 1986, pp. 118–131.
|
[3] |
D. E. Denning and P. G. Neumann, “Requirements and model for IDES: a real-time intrusion detection system,” SRI Int., 1985.
|
[4] |
B. Li, J. Z. Wang, P. Zhao, Z. J. Yan, and M. Yang, “Research of recognition system of web intrusion detection based on storm,” in Proc. 5th Int. Conf. Network, Communication and Computing, Kyoto, Japan, Dec. 2016, pp. 98–102.
|
[5] |
L. Zhu and C. S. Zhu, “Data stream sliding window clustering algorithm applied in IDS,” Comput. Eng. Appl., vol. 50, no. 1, pp. 87–90, Jan. 2014.
|
[6] |
C. C. Ge, “The research and application of data stream mining in intrusion detection,” M.S. thesis, Guangdong University of Technology, Guangzhou, China, 2013.
|
[7] |
N. C. N. Chu, A. Williams, R. Alhajj, and K. Barker, “Data stream mining architecture for network intrusion detection,” in Proc. IEEE Int. Conf. Information Reuse and Integration, Las Vegas, USA, 2004, pp. 363–368.
|
[8] |
Y. Yu, S. Q. Guo, and H. Huang, “Anomaly intrusion detection based on data stream,” Comput. Sci., vol. 34, no. 5, pp. 66–71, 114, May 2007.
|
[9] |
D. K. Sadhasivan and K Balasubramanian, “A fusion of multiagent functionalities for effective intrusion detection system,” Secur. Commun. Netw., pp. 6216078, Jan. 2017.
|
[10] |
S. Shamshirband, N. B. Anuar, M. L. M. Kiah, and A. Patel, “An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique,” Eng. Appl. Artif. Intell., vol. 26, no. 9, pp. 2105–2127, Oct. 2013. doi: 10.1016/j.engappai.2013.04.010
|
[11] |
A. Chauhan, G. Mishra, and G. Kumar, “Survey on data mining techniques in intrusion detection,” Int. J. Sci. Eng. Res., vol. 2, no. 7, pp. 1–4, Jul. 2011.
|
[12] |
J. J. Davis and A. J. Clark, “Data preprocessing for anomaly based network intrusion detection: a review,” Comput. Secur., vol. 30, no. 6–7, pp. 353–375, Sep.–Oct. 2011. doi: 10.1016/j.cose.2011.05.008
|
[13] |
S. A. Joshi and V. S. Pimprale, “Network intrusion detection system (NIDS) based on data mining,” Int. J. Eng. Sci. Innov. Technol., vol. 2, no. 1, pp. 95–98, Jan. 2013.
|
[14] |
G. V. Nadiammai and M. Hemalatha, “Effective approach toward intrusion detection system using data mining techniques,” Egypt. Inform. J., vol. 15, no. 1, pp. 37–50, Mar. 2014. doi: 10.1016/j.eij.2013.10.003
|
[15] |
M. Panda, A. Abraham, and M. R. Patra, “A hybrid intelligent approach for network intrusion detection,” Procedia Eng., vol. 30, pp. 1–9, 2012.
|
[16] |
A. Biswas, M. Sharma, T. Poddder, and N. Kar, “An approach towards multilevel and multiagent based intrusion detection system,” in Proc. IEEE Int. Conf. Advanced Communications, Control and Computing Technologies, Ramanathapuram, India, 2014, pp. 1787–1790.
|
[17] |
W. Wang, T. Guyet, R. Quiniou, M. O. Cordier, F. Masseglia, and X. L. Zhang, “Autonomic intrusion detection: adaptively detecting anomalies over unlabeled audit data streams in computer networks,” Knowl.-Based Syst., vol. 70, pp. 103–117, Nov. 2014. doi: 10.1016/j.knosys.2014.06.018
|
[18] |
Y. X. Chen and L. Tu, “Density-based clustering for real-time stream data,” in Proc. 13th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Jose, USA, 2007, pp.133–142.
|
[19] |
M. M. Rathore, A. Paul, A. Ahmad, S. Rho, M. Imran, and M. Guizani, “Hadoop based real-time intrusion detection for high-speed networks,” in Proc. Global Communications Conf., Washington, USA, 2017, pp.1–6.
|
[20] |
Y. Li, B. X. Fang, L. Guo, and Z. H. Tian, “Supervised intrusion detection based on active learning and TCM-KNN algorithm,” Chin. J. Comput., vol. 30, no. 8, pp. 1464–1473, Aug. 2007.
|
[21] |
S. A. Abdulla, S. Ramadass, A. Altaher, and A. Al Nassiri, “Setting a worm attack warning by using machine learning to classify NetFlow data,” Int. J. Comput. Appl., vol. 36, no. 2, pp. 49–56, Dec. 2011.
|
[22] |
D. S. Terzi, R. Terzi, and S. Sagiroglu, “Big data analytics for network anomaly detection from netflow data,” in Proc. Int. Conf. Computer Science and Engineering, Antalya, Turkey, 2017, pp.592–597.
|
[23] |
A. R. Syarif and W. Gata, “Intrusion detection system using hybrid binary PSO and K-nearest neighborhood algorithm,” in Proc. 11th Int. Conf. Information & Communication Technology and System, London, UK, 2017, pp.181–186.
|
[24] |
C. Wagner, J. François, R. State, and T. Engel, “Machine learning approach for IP-flow record anomaly detection,” in Proc. 10th Int. Networking Conf., Valencia, Spain, 2011.
|
[25] |
L. Khan, M. Awad, and B. Thuraisingham, “A new intrusion detection system using support vector machines and hierarchical clustering,” VLDB J., vol. 16, no. 4, pp. 507–521, Oct. 2007. doi: 10.1007/s00778-006-0002-5
|
[26] |
E. W. T. Ferreira, G. A. Carrijo, R. de Oliveira, and N. V. de Souza Araujo, “Intrusion detection system with wavelet and neural artifical network approach for networks computers,” IEEE Latin America. Trans., vol. 9, no. 5, pp. 832–837, Sep. 2011. doi: 10.1109/TLA.2011.6030997
|
[27] |
S. S. Sivatha Sindhu, S. Geetha, and A. Kannan, “Decision tree based light weight intrusion detection using a wrapper approach,” Expert Syst. Appl., vol. 39, no. 1, pp. 129–141, Jan. 2012. doi: 10.1016/j.eswa.2011.06.013
|
[28] |
P. Louvieris, N. Clewley, and X. H. Liu, “Effects-based feature identification for network intrusion detection,” Neurocomputing, vol. 121, pp. 265–273, Dec. 2013. doi: 10.1016/j.neucom.2013.04.038
|
[29] |
A. Karami and M. Guerrero-Zapata, “A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks,” Neurocomputing, vol. 149, pp. 1253–1269, Feb. 2015. doi: 10.1016/j.neucom.2014.08.070
|
[30] |
I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a hew intrusion detection dataset and intrusion traffic characterization,” in Proc. 4th Int. Conf. Information System Secwrity and Privacy (ICISSP), Portugal, pp. 108–116, Jan. 2018.
|
[31] |
N. Gao, L. Gao, and Y. Y. He, “Deep belief nets model oriented to intrusion detection system,” Syst. Eng. Electron., vol. 38, no. 9, pp. 2201–2207, Sep. 2016.
|