IEEE/CAA Journal of Automatica Sinica
Citation: | Jianchao Luo, Zhiqiang Liu, Shuogang Wang and Keyi Xing, "Robust Deadlock Avoidance Policy for Automated Manufacturing System With Multiple Unreliable Resources," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 812-821, May 2020. doi: 10.1109/JAS.2020.1003096 |
[1] |
Y. F. Chen and Z. W. Li, “Design of a maximally permissive liveness-enforcing supervisor with a compressed supervisory structure for flexible manufacturing systems,” Automatica, vol. 47, no. 5, pp. 1028–1034, Mar. 2011. doi: 10.1016/j.automatica.2011.01.070
|
[2] |
Y. F. Chen, Z. W. Li, and M. C. Zhou, “Behaviorally optimal and structurally simple liveness-enforcing supervisors of flexible manufacturing systems,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 42, no. 42, pp. 615–629, May 2012.
|
[3] |
J. Ezpeleta, J. M. Colom, and J. Martinez, “A Petri net based deadlock prevention policy for flexible manufacturing systems,” IEEE Trans. Robot. Autom., vol. 11, no. 2, pp. 173–184, Apr. 1995. doi: 10.1109/70.370500
|
[4] |
M. P. Fanti and M. C. Zhou, “Deadlock control methods in automated manufacturing systems,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 34, no. 1, pp. 5–22, Jan. 2004. doi: 10.1109/TSMCA.2003.820590
|
[5] |
H. S. Hu, M. C. Zhou, Z. W. Li, and Y. Tang, “Deadlock-free control of ams with flexible routes and assembly operations using Petri nets,” IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 109–121, Feb. 2013. doi: 10.1109/TII.2012.2198661
|
[6] |
H. S. Hu and M. C. Zhou, “A Petri net-based discrete event control of automated manufacturing systems with assembly operations,” IEEE Trans. Control Syst. Technol., vol. 23, no. 2, pp. 513–524, Mar. 2015. doi: 10.1109/TCST.2014.2342664
|
[7] |
Z. W. Li, G. Liu, H. Hanisch, and M. C. Zhou, “Deadlock prevention based on structure reuse of Petri net supervisors for flexible manufacturing systems,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 42, no. 1, pp. 178–191, Jan. 2012. doi: 10.1109/TSMCA.2011.2147308
|
[8] |
H. X. Liu, K. Y. Xing, M. C. Zhou, L. B. Han, and F. Wang, “Transition cover-based design of Petri net controllers for automated manufacturing systems,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 44, no. 2, pp. 196–208, Feb. 2014. doi: 10.1109/TSMC.2013.2238923
|
[9] |
H. X. Liu, W. Wu, H. Su, and Z. Zhang, “Design of optimal Petri net controllers for a class of flexible manufacturing systems with key resources,” Inform. Sciences, vol. 363, pp. 221–234, Oct. 2016. doi: 10.1016/j.ins.2015.11.021
|
[10] |
G. Y. Liu and K. Barkaoui, “Necessary and sufficient liveness condition of GS3PR Petri nets,” Int. J. Syst. Science, vol. 46, no. 7, pp. 1147–1160, May 2015. doi: 10.1080/00207721.2013.827257
|
[11] |
G. Y. Liu and D. Y. Chao, “Further reduction of minimal first-met bad markings for the computationally efficient synthesis of a maximally permissive controller,” Int. J. Control, vol. 88, no. 8, pp. 1–6, Aug. 2015.
|
[12] |
J. C. Luo, Z. Q. Liu, and M. C. Zhou, “A Petri net-based deadlock avoidance policy for flexible manufacturing systems with assembly operations and multiple resource acquisition,” IEEE Trans. Ind. Inform., vol. 15, no. 6, pp. 3379–3387, Jun. 2019. doi: 10.1109/TII.2018.2876343
|
[13] |
L. Piroddi, R. Cordone, and I. Fumagalli, “Selective siphon control for deadlock prevention in Petri nets,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 38, no. 6, pp. 1337–1348, Nov. 2008. doi: 10.1109/TSMCA.2008.2003535
|
[14] |
N. Q. Wu, M. C. Zhou, and G. Hu, “Petri net modeling and one-step look-ahead maximally permissive deadlock control of automated manufacturing systems,” ACM Trans. Embed. Comput. Syst., vol. 12, no. 1, pp. 1–10, Jan. 2013.
|
[15] |
N. Q. Wu, M. C. Zhou, and Z. W. Li, “Resource-oriented Petri net for deadlock avoidance in flexible assembly systems,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 38, no. 1, pp. 56–69, Jan. 2008. doi: 10.1109/TSMCA.2007.909542
|
[16] |
K. Y. Xing, M. C. Zhou, H. X. Liu, and F. Tian, “Optimal Petri-net-based polynomial-complexity deadlock avoidance policies for automated manufacturing systems,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 39, no. 1, pp. 188–199, Jan. 2009. doi: 10.1109/TSMCA.2008.2007947
|
[17] |
K. Y. Xing, F. Wang, M. C. Zhou, H. Lei, and J. C. Luo, “Deadlock characterization and control of flexible assembly systems with Petri nets,” Automatica, vol. 87, pp. 358–364, Jan. 2018. doi: 10.1016/j.automatica.2017.09.001
|
[18] |
S. F. Chew and M. A. Lawley, “Robust supervisory control for production systems with multiple resource failures,” IEEE Trans. Autom. Sci. Eng., vol. 3, pp. 309–323, Jul. 2006. doi: 10.1109/TASE.2005.861397
|
[19] |
S. F. Chew, S. Wang, and M. A. Lawley, “Robust supervisory control for product routings with multiple unreliable resources,” IEEE Trans. Autom. Sci. Eng., vol. 6, no. 1, pp. 195–200, Jan. 2009. doi: 10.1109/TASE.2008.917142
|
[20] |
S. F. Chew, S. Y. Wang, and M. A. Lawley, “Resource failure and blockage control for production systems,” Int. J. Comput. Integ. M., vol. 24, no. 3, pp. 229–241, 2011. doi: 10.1080/0951192X.2011.552526
|
[21] |
F. Hsieh, “Fault-tolerant deadlock avoidance algorithm for assembly processes,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 34, no. 1, pp. 65–79, Jan. 2004. doi: 10.1109/TSMCA.2003.820574
|
[22] |
F. Hsieh, “Analysis of flexible assembly processes based on structural decomposition of Petri nets,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 37, no. 5, pp. 792–803, Sep. 2007. doi: 10.1109/TSMCA.2007.902651
|
[23] |
M. A. Lawley, “Control of deadlock and blocking for production systems with unreliable workstations,” Int. J. Prod. Res., vol. 40, no. 17, pp. 4563–4582, Nov. 2002. doi: 10.1080/00207540210155792
|
[24] |
M. A. Lawley and W. Sulistyono, “Robust supervisory control policies for manufacturing systems with unreliable resources,” IEEE Trans. Robot. Autom., vol. 18, no. 3, pp. 346–359, 2002. doi: 10.1109/TRA.2002.1019464
|
[25] |
G. Y. Liu, P. Li, Z. W. Li, and N. Q. Wu, “Robust deadlock control for automated manufacturing systems with unreliable resources based on Petri net reachability graphs,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 49, no. 7, pp. 1371–1385, 2018.
|
[26] |
G. Y. Liu, P. Li, N. Q. Wu, and L. Yin, “Two step approach to robust deadlock control in automated manufacturing systems with multiple resource failures,” J. Chin. Inst. Eng., vol. 41, no. 4, pp. 484–494, Oct. 2018.
|
[27] |
G. Y. Liu, Z. W. Li, K. Barkaoui, and A. M. Al-Ahmari, “Robustness of deadlock control for a class of Petri nets with unreliable resources,” Inform. Sciences, vol. 235, no. 6, pp. 259–279, 2013.
|
[28] |
J. C. Luo, K. Y. Xing, and Y. C. Wu, “Robust supervisory control policy for automated manufacturing systems with a single unreliable resource,” Trans. I. Meas. Control, vol. 39, no. 6, pp. 793–806, Jun. 2017. doi: 10.1177/0142331216656755
|
[29] |
J. C. Luo, K. Y. Xing, and M. C. Zhou, “Deadlock and blockage control of automated manufacturing systems with an unreliable resource,” Asian J. Control, vol. 21, no. 6, pp. 1–12, Nov. 2018.
|
[30] |
J. C. Luo, Z. Q. Liu, M. C. Zhou, K. Y. Xing, X. N. Wang, X. L. Li, and H. X. Liu, “Robust deadlock control of automated manufacturing systems with multiple unreliable resources,” Inform. Sciences, vol. 479, pp. 401–415, Apr. 2019. doi: 10.1016/j.ins.2018.11.051
|
[31] |
S. Y. Wang, S. F. Chew, and M. A. Lawley, “Using shared-resource capacity for robust control of failure-prone manufacturing systems,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 38, no. 3, pp. 605–627, May 2008. doi: 10.1109/TSMCA.2008.918616
|
[32] |
F. Wang, K. Y. Xing, M. C. Zhou, X. P. Xu, and L. B. Han, “A robust deadlock prevention control for automated manufacturing systems with unreliable resources,” Inform. Sciences, vol. 345, pp. 243–256, Jun. 2016. doi: 10.1016/j.ins.2016.01.057
|
[33] |
Y. C. Wu, K. Y. Xing, J. C. Luo, and Y. X. Feng, “Robust deadlock control for automated manufacturing systems with an unreliable resource,” Inform. Sciences, vol. 346, pp. 17–28, Jun. 2016.
|
[34] |
H. Yue, K. Y. Xing, and Z. Hu, “Robust supervisory control policy for avoiding deadlock in automated manufacturing systems with unreliable resources,” Int. J. Prod. Res., vol. 52, no. 6, pp. 1573–1591, Mar. 2014. doi: 10.1080/00207543.2013.807375
|
[35] |
H. Yue, K. Y. Xing, H. S. Hu, W. M. Wu, and H. Y. Su, “Resource failure and buffer space allocation control for automated manufacturing systems,” Inform. Sciences, vol. 450, pp. 392–408, Jun. 2018. doi: 10.1016/j.ins.2018.02.043
|
[36] |
H. Yue and K. Y. Xing, “Robust supervisory control for avoiding deadlocks in automated manufacturing systems with one specified unreliable resource,” Trans. I. Meas. Control, vol. 36, no. 4, pp. 435–444, Jun. 2014. doi: 10.1177/0142331213495884
|
[37] |
L. P. Bai, N. Q. Wu, Z. W. Li, and M. C. Zhou, “Optimal one-wafer cyclic scheduling and buffer space configuration for single-arm multicluster tools with linear topology,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 46, no. 10, pp. 1456–1467, Oct. 2016. doi: 10.1109/TSMC.2015.2501232
|
[38] |
F. J. Yang, N. Q. Wu, Y. Qao, M. C. Zhou, and Z. W. Li, “Scheduling of single arm cluster tools for anatomic layer deposition process with residency time constraints,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 47, no. 3, pp. 502–516, Mar. 2017. doi: 10.1109/TSMC.2015.2507140
|
[39] |
X. Lu, M. C. Zhou, A. C. Ammari, and J. Ji, “Hybrid Petri nets for modeling and analysis of microgrid systems,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 347–354, Oct. 2016.
|
[40] |
J. C. Luo, Z. Q. Liu, M. C. Zhou, and K. Y. Xing, “Deadlock-free scheduling of flexible assembly systems based on Petri nets and local search,” IEEE Trans. Syst.,Man,Cybern.,Syst, 2018. doi: 10.1109/TSMC.2018.2855685,2018
|
[41] |
T. Murata, “Petri nets: properties, analysis and applications,” Proc. IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989. doi: 10.1109/5.24143
|
[42] |
Y. Qiao, N. Q. Wu, F. J. Yang, M. C. Zhou, and Q. H. Zhu, “Wafer sojourn time fluctuation analysis of time-constrained dual-arm cluster tools with wafer revisiting and activity time variation,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 48, no. 4, pp. 622–636, Apr. 2018. doi: 10.1109/TSMC.2016.2600583
|
[43] |
N. Ran, H. Su, and S. Wang, “An improved approach to test diagnosability of bounded Petri nets,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 297–303, 2017. doi: 10.1109/JAS.2017.7510406
|
[44] |
N. Q. Wu and M. C. Zhou, “Modeling, analysis and control of dual arm cluster tools with residency time constraint and activity time variation based on Petri nets,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 2, pp. 446–454, Apr. 2012. doi: 10.1109/TASE.2011.2178023
|
[45] |
N. Q. Wu, M. C. Zhou, and Z. W. Li, “Short term scheduling of crude oil operations: Petri net based control theoretic approach,” IEEE Trans. Robot. Autom. Mag., vol. 22, no. 2, pp. 64–76, Jun. 2015. doi: 10.1109/MRA.2015.2415047
|
[46] |
F. J. Yang, N. Q. Wu, Y. Qiao, and R. Su, “Polynomial approach to optimal one-wafer cyclic scheduling of treelike hybrid multi-cluster tools via Petri nets,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 270–280, 2018. doi: 10.1109/JAS.2017.7510772
|
[47] |
S. W. Zhang, N. Q. Wu, Z. W. Li, T. Qu, and C. D. Li, “Petri net based approach to short term scheduling of crude oil operations with less tank requirement,” Inform. Sciences, vol. 417, pp. 247–261, Nov. 2017. doi: 10.1016/j.ins.2017.07.009
|
[48] |
M. C. Zhou and M. P. Fanti, Deadlock Resolution in Computer-Integrated System, New York, NY, USA: Marcel Dekker, 2005.
|
[49] |
Q. H. Zhu, M. C. Zhou, Y. Qiao, and N. Q. Wu, “Petri net modeling and scheduling of a close down process for time-constrained single-arm cluster tools,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 48, no. 3, pp. 389–400, Mar. 2018. doi: 10.1109/TSMC.2016.2598303
|