IEEE/CAA Journal of Automatica Sinica
Citation: | Kajal Kothari, Utkal Mehta, Vineet Prasad and Jito Vanualailai, "Identification Scheme for Fractional Hammerstein Models With the Delayed Haar Wavelet," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 882-891, May 2020. doi: 10.1109/JAS.2020.1003093 |
[1] |
J. Wang, Y. Wei, T. Liu, A. Li, and Y. Wang, “Fully parametric identification for continuous time fractional order Hammerstein systems,” J. Franklin I., 2019.
|
[2] |
Y. Zhao, Y. Li, F. Zhou, Z. Zhou, and Y. Chen, “An iterative learning approach to identify fractional order KiBaM model,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 322–331, 2017. doi: 10.1109/JAS.2017.7510358
|
[3] |
S. W. Sung, “System identification method for Hammerstein processes,” Industrial &Engineering Chemistry Research, vol. 41, no. 17, pp. 4295–4302, 2002.
|
[4] |
Y. J. Lee, S. W. Sung, S. Park, and S. Park, “Input test signal design and parameter estimation method for the Hammerstein-Wiener processes,” Industrial &Engineering Chemistry Research, vol. 43, no. 23, pp. 7521–7530, 2004.
|
[5] |
H. C. Park, S. W. Sung, and J. Lee, “Modeling of Hammerstein-Wiener processes with special input test signals,” Industrial &Engineering Chemistry Research, vol. 45, no. 3, pp. 1029–1038, 2006.
|
[6] |
J.-C. Jeng, M.-W. Lee, and H.-P. Huang, “Identification of block-oriented nonlinear processes using designed relay feedback tests,” Industrial &Engineering Chemistry Research, vol. 44, no. 7, pp. 2145–2155, 2005.
|
[7] |
U. Mehta and S. Majhi, “Identification of a class of Wiener and Hammerstein-type nonlinear processes with monotonic static gains,” ISA Trans., vol. 49, no. 4, pp. 501–509, 2010. doi: 10.1016/j.isatra.2010.04.006
|
[8] |
S. Dong, T. Liu, and Q. Wang, “Identification of Hammerstein systems with time delay under load disturbance,” IET Control Theory Applications, vol. 12, no. 7, pp. 942–952, 2018.
|
[9] |
S. Zhang, D. Wang, and F. Liu, “Separate block-based parameter estimation method for hammerstein systems,” Royal Society Open Science, vol. 5, no. 6, 2018. doi: 10.1098/rsos.172194
|
[10] |
F. Li and L. Jia, “Parameter estimation of Hammerstein-Wiener nonlinear system with noise using special test signals,” Neurocomputing, vol. 344, pp. 37–48, 2019. doi: 10.1016/j.neucom.2018.02.108
|
[11] |
M. Aoun, R. Malti, O. Cois, and A. Oustaloup, “System identification using fractional Hammerstein models, ” in Proc. 15th IFAC World Congr., Spain, pp. 264–268, 2002.
|
[12] |
K. Hsu, K. Poolla, and T. L. Vincent, “Identification of structured nonlinear systems,” IEEE Trans. Automatic Control, vol. 53, no. 11, pp. 2497–2513, 2008. doi: 10.1109/TAC.2008.2006928
|
[13] |
A. Maachou, R. Malti, P. Melchior, J.-L. Battaglia, A. Oustaloup, and B. Hay, “Nonlinear thermal system identification using fractional Volterra series,” Control Engineering Practice, vol. 29, pp. 50–60, 2014. doi: 10.1016/j.conengprac.2014.02.023
|
[14] |
L. Vanbeylen, “A fractional approach to identify Wiener-Hammerstein systems,” Automatica, vol. 50, no. 3, pp. 903–909, 2014. doi: 10.1016/j.automatica.2013.12.013
|
[15] |
G. Giordano and J. Sjoberg, “A time-domain fractional approach for Wiener-Hammerstein systems identification,” IFAC-PapersOnLine, vol. 48, no. 28, pp. 1232–1237, 2015. doi: 10.1016/j.ifacol.2015.12.300
|
[16] |
W. Allafi, I. Zajic, K. Uddin, and K. J. Burnham, “Parameter estimation of the fractional-order Hammerstein-Wiener model using simplified refined instrumental variable fractional-order continuous time,” IET Control Theory Applications, vol. 11, no. 15, pp. 2591–2598, 2017. doi: 10.1049/iet-cta.2017.0284
|
[17] |
V. S. Krishnasamy, S. Mashayekhi, and M. Razzaghi, “Numerical solutions of fractional differential equations by using fractional Taylor basis,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 98–106, 2017. doi: 10.1109/JAS.2017.7510337
|
[18] |
W. Gu, Y. Yu, and W. Hu, “Artificial bee colony algorithmbased parameter estimation of fractional-order chaotic system with time delay,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 107–113, 2017. doi: 10.1109/JAS.2017.7510340
|
[19] |
N. I. Chaudhary, M. S. Aslam, and M. A. Z. Raja, “Modified volterra lms algorithm to fractional order for identification of Hammerstein nonlinear system,” IET Signal Processing, vol. 11, no. 8, pp. 975–985, 2017. doi: 10.1049/iet-spr.2016.0578
|
[20] |
D. Cai, Y. Yu, and J. Wei, “A modified artificial Bee colony algorithm for parameter estimation of fractional-order nonlinear systems,” IEEE Access, vol. 6, pp. 48600–48610, 2018. doi: 10.1109/ACCESS.2018.2859978
|
[21] |
M. J. Moghaddam, H. Mojallali, and M. Teshnehlab, “Recursive identification of multiple-input single-output fractional-order Hammerstein model with time delay,” Applied Soft Computing, vol. 70, pp. 486–500, 2018. doi: 10.1016/j.asoc.2018.05.046
|
[22] |
S. Cheng, Y. Wei, D. Sheng, Y. Chen, and Y. Wang, “Identification for Hammerstein nonlinear ARMAX systems based on multi-innovation fractional order stochastic gradient,” Signal Processing, vol. 142, pp. 1–10, 2018. doi: 10.1016/j.sigpro.2017.06.025
|
[23] |
M.-R. Rahmani and M. Farrokhi, “Fractional-order Hammerstein statespace modeling of nonlinear dynamic systems from input-output measurements,” ISA Trans., 2019.
|
[24] |
Z. Aslipour and A. Yazdizadeh, “Identification of nonlinear systems using adaptive variable-order fractional neural networks (case study: a wind turbine with practical results),” Engineering Applications of Artificial Intelligence, vol. 85, pp. 462–473, 2019. doi: 10.1016/j.engappai.2019.06.025
|
[25] |
S. Cheng, Y. Wei, D. Sheng, and Y. Wang, “Identification for Hammerstein nonlinear systems based on universal spline fractional order LMS algorithm,” Communications in Nonlinear Science and Numerical Simulation, vol. 79, pp. 104901, 2019. doi: 10.1016/j.cnsns.2019.104901
|
[26] |
Y. Li, X. Meng, and Y.-Q. Ding, “Using wavelet multi-resolution nature to accelerate the identification of fractional order system,” Chinese Physics B, vol. 26, no. 5, pp. 050201, 2017. doi: 10.1088/1674-1056/26/5/050201
|
[27] |
Y. Li, X. Meng, B. Zheng, and Y. Ding, “Parameter identification of fractional order linear system based on Haar wavelet operational matrix,” ISA Trans., vol. 59, pp. 79–84, 2015. doi: 10.1016/j.isatra.2015.08.011
|
[28] |
Y. Tang, N. Li, M. Liu, Y. Lu, and W. Wang, “Identification of fractionalorder systems with time delays using block pulse functions,” Mechanical Systems and Signal Processing, vol. 91, pp. 382–394, 2017. doi: 10.1016/j.ymssp.2017.01.008
|
[29] |
K. Kothari, U. Mehta, and J. Vanualailai, “A novel approach of fractional-order time delay system modeling based on Haar wavelet,” ISA Trans., vol. 80, pp. 371–380, 2018. doi: 10.1016/j.isatra.2018.07.019
|
[30] |
X.-L. Luo, L.-Z. Liao, and H. W. Tam, “Convergence analysis of the Levenberg-Marquardt method,” Optimization Methods and Software, vol. 22, no. 4, pp. 659–678, 2007. doi: 10.1080/10556780601079233
|
[31] |
M. A. Demetriou and I. G. Rosen, “On the persistence of excitation in the adaptive estimation of distributed parameter systems,” IEEE Trans. Automatic Control, vol. 39, no. 5, pp. 1117–1123, 1994. doi: 10.1109/9.284907
|