IEEE/CAA Journal of Automatica Sinica
Citation: | Yiming Cheng, Xu Zhang, Tianhe Liu and Changhong Wang, "Finite-time Control of Discrete-time Systems With Variable Quantization Density in Networked Channels," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1394-1402, Sept. 2020. doi: 10.1109/JAS.2020.1003087 |
[1] |
Y.-F. Huang, S. Werner, J. Huang, N. Kashyap, and V. Gupta, “State estimation in electric power grids: Meeting new challenges presented by the requirements of the future grid,” IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 33–43, 2012. doi: 10.1109/MSP.2012.2187037
|
[2] |
Z. P. Ning, L. X. Zhang, J. de Juses Rubio, and X. Y. Yin, “Asynchronous filtering for discrete-time fuzzy affine systems with variable quantization density,” IEEE Trans. Cybernetics, vol. 47, no. 1, pp. 153–164, 2017. doi: 10.1109/TCYB.2015.2509170
|
[3] |
A. Kahrobaeian and Y. A.-R. I. Mohamed, “Networked-based hybrid distributed power sharing and control for islanded microgrid systems,” IEEE Trans. Power Electronics, vol. 30, no. 2, pp. 603–617, 2014.
|
[4] |
M. Yu, L. Wang, T. G. Chu, and G. M. Xie, “Stabilization of networked control systems with data packet dropout and network delays via switching system approach,” in Proc. 43rd IEEE Conf. Decision & Control, 2004. 3539–3544.
|
[5] |
X. Y. Yin, Z. J. Li, L. X. Zhang, and M. H. Han, “Distributed state estimation of sensor-network systems subject to markovian channel switching with application to a chemical process,” IEEE Trans. Systems Man &Cybernetics Systems, vol. 48, no. 6, pp. 864–874, 2018.
|
[6] |
S. Wang, M. Zeng, H. P. Ju, L. X. Zhang, T. Hayat, and A. Alsaedi, “Finitetime control for networked switched linear systems with an event-driven communication approach,” Int. J. Systems Science, vol. 48, no. 2, pp. 236–246, 2017. doi: 10.1080/00207721.2016.1177130
|
[7] |
Y. Z. Zhu, Z. X. Zhong, M. V. Basin, and D. H. Zhou, “A descriptor system approach to stability and stabilization of discrete-time switched pwa systems,” IEEE Trans. Autom. Control, vol. 63, no. 10, pp. 3456–3463, 2018. doi: 10.1109/TAC.2018.2797173
|
[8] |
S. Yuan, L. X. Zhang, B. D. Schutter, and S. Baldi, “A novel Lyapunov function for a non-weighted L2 gain of asynchronously switched linear systems,” Automatica, vol. 87, pp. 310–317, 2018. doi: 10.1016/j.automatica.2017.10.018
|
[9] |
Y. Z. Zhu and W. X. Zheng,“Multiple lyapunov functions analysis approach for discrete-time switched piecewise-affine systems under dwelltime constraints,” IEEE Trans. Autom. Control, 2019.
|
[10] |
H. J. Gao and T. W. Chen, “A new approach to quantized feedback control systems,” Automatica, vol. 44, no. 2, pp. 534–542, 2008. doi: 10.1016/j.automatica.2007.06.015
|
[11] |
Y. Z. Zhu, W. X. Zheng, and D. H. Zhou, “Quasi-synchronization of discretetime lure-type switched systems with parameter mismatches and relaxed pdt constraints,” IEEE Trans. Cybernetics, vol. 50, no. 5, pp. 2026–2037, 2020. doi: 10.1109/TCYB.2019.2930945
|
[12] |
L. X. Zhang, Z. P. Ning, and W. X. Zheng, “Observer-based control for piecewise-affine systems with both input and output quantization,” IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5858–5865, 2017. doi: 10.1109/TAC.2016.2641585
|
[13] |
Z. P. Ning, L. X. Zhang, J. T. Liang, and J. de. J. Rubio, “State estimation for T-S fuzzy affine systems with variable quantization density,” in Proc. 6th Int. Conf. Intelligent Control & Information Processing, 2016, pp. 274–279.
|
[14] |
Z. P. Ning, L. X. Zhang, J. de. J. Rubio, and X. Y. Yin, “Asynchronous filtering for discrete-time fuzzy affine systems with variable quantization density,” IEEE Trans. Cybernetics, vol. 47, no. 1, pp. 153–164, 2016.
|
[15] |
G. V. Kamenkov, “On stability of motion over a finite interval of time,” Akad. Nauk SSSR. Prikl. Mat. Meh, pp. 529–540, 1953.
|
[16] |
K. K. Gupta and S. Jain, “A novel multilevel inverter based on switched dc sources,” IEEE Trans. Industrial Electronics, vol. 61, no. 7, pp. 3269–3278, 2014. doi: 10.1109/TIE.2013.2282606
|
[17] |
K. C. Walker, Y. J. Pan, and J. Gu, “Bilateral teleoperation over networks based on stochastic switching approach,” IEEE/ASME Trans. Mechatronics, vol. 14, no. 5, pp. 539–554, 2009. doi: 10.1109/TMECH.2009.2007126
|
[18] |
P. C. Pellanda, P. Apkarian, H. D. Tuan, and D. Alazard, “Missile autopilot design via a multi-channel lft/lpv control method,” IFAC Proceedings Volumes, vol. 35, no. 1, pp. 107–112, 2002.
|
[19] |
F. Amato, G. D. Tommasi, and A. Pironti, “Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,” Automatica, vol. 49, no. 8, pp. 2546–2550, 2013. doi: 10.1016/j.automatica.2013.04.004
|
[20] |
M. N. Elbsat and E. E. Yaz, “Robust and resilient finite-time bounded control of discrete-time uncertain nonlinear systems,” Automatica, vol. 49, no. 7, pp. 2292–2296, 2013. doi: 10.1016/j.automatica.2013.04.003
|
[21] |
J. Song, Y. G. Niu, and Y. Y. Zou, “Robust finite-time bounded control for discrete-time stochastic systems with communication constraint,” IET Control Theory &Applications, vol. 9, no. 13, pp. 2015–2021, 2015.
|
[22] |
S. Shi, Z. P. Shi, Z. Y. Fei, and Z. Liu, “Finite-time output feedback control for discrete-time switched linear systems with mode-dependent persistent dwell-time,” J. Franklin Institute, vol. 355, no. 13, pp. 5560–5575, 2018. doi: 10.1016/j.jfranklin.2018.05.057
|
[23] |
L. X. Zhang, S. L. Zhuang, P. Shi, and Y. Z. Zhu, “Uniform tube based stabilization of switched linear systems with mode-dependent persistent dwell-time,” IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 2994–2999, 2015. doi: 10.1109/TAC.2015.2414813
|
[24] |
X. Z. Lin, H. B. Du, S. H. Li, and Y. Zou, “Finite-time stability and finitetime weighted L2-gain analysis for switched systems with time-varying delay,” IET Control Theory &Applications, vol. 7, no. 7, pp. 1058–1069, 2013.
|