IEEE/CAA Journal of Automatica Sinica
Citation: | Teng Liu, Bin Tian, Yunfeng Ai and Fei-Yue Wang, "Parallel Reinforcement Learning-Based Energy Efficiency Improvement for a Cyber-Physical System," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 617-626, Mar. 2020. doi: 10.1109/JAS.2020.1003072 |
[1] |
F.-Y. Wang, “The emergence of intelligent enterprises: from CPS to CPSS,” IEEE Trans. Intell. Transp. Syst., vol. 25, no. 4, pp. 85–88, 2010.
|
[2] |
F.-Y. Wang, “Control 5.0: from Newton to Merton in popper’s cyber-social-physical spaces,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 3, pp. 233–234, 2016. doi: 10.1109/JAS.2016.7508796
|
[3] |
X. L. Tang, X. S. Hu, W. Yang, and H. S. Yu, “Novel torsional vibration modeling and assessment of a power-split hybrid electric vehicle equipped with a dual mass flywheel,” IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 1900−2000, 2018.
|
[4] |
T. Liu, X. S. Hu, W. H. Hu, and Y. Zou, “A heuristic planning reinforcement learning-based energy management for power-split plug-in hybrid electric vehicles,” IEEE Trans. Industrial Informatics, Mar. 2019.
|
[5] |
T. Liu, X. S. Hu, S. E. Li, and D. P. Cao, “Reinforcement learning optimized look-ahead energy management of a parallel hybrid electric vehicle,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 4, pp. 1497–1507, 2017. doi: 10.1109/TMECH.2017.2707338
|
[6] |
Y. Zou, T. Liu, D. X. Liu, and F. C. Sun, “Reinforcement learning-based real-time energy management for a hybrid tracked vehicle,” Applied Energy, vol. 171, pp. 372–382, 2016. doi: 10.1016/j.apenergy.2016.03.082
|
[7] |
C. Lv, Y. H. Liu, X. S. Hu, H. Guo, D. P. Cao, and F.-Y. Wang, “Simultaneous observation of hybrid states for cyber-physical systems: a case study of electric vehicle powertrain,” IEEE Trans. Cybernetics, vol. 48, no. 8, pp. 2357–2367, 2018.
|
[8] |
X. S. Hu, H. Wang, and X. L. Tang, “Cyber-physical control for ener-gy-saving vehicle following with connectivity,” IEEE Trans. Indus. Electron., vol. 64, no. 11, pp. 8578–8587, 2017.
|
[9] |
Y. Zou, Z. H. Kong, T. Liu, and D. X. Liu, “A real-time Markov chain driver model for tracked vehicles and its validation: its adaptability via stochastic dynamic programming,” IEEE Trans. Veh. Technol., vol. 66, no. 5, pp. 3571–3582, 2017.
|
[10] |
T. Liu, Y. Zou, D. X. Liu, and F. C. Sun, “Reinforcement learning of adaptive energy management with transition probability for a hybrid electric tracked vehicle,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7837–7846, 2015.
|
[11] |
C. M. Martinez, X. S. Hu, D. P. Cao E. Velenis, B. Gao, and M. Wellers, “Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective,” IEEE Trans. Veh. Technol., vol. 66, no. 6, pp. 4534–4549, 2017. doi: 10.1109/TVT.2016.2582721
|
[12] |
Y. C. Qin, F. Zhao, Z. F. Wang L. Gu, and M. M. Dong, “Comprehensive analysis for influence of controllable damper time delay on semi-active suspension control strategies,” J. Vibration and Acoustics-Trans. ASME, vol. 139, no. 3, pp. 031006-1–031006-12, 2017. doi: 10.1115/1.4035700
|
[13] |
T. Liu, B. Wang, and C. L. Yang, “Online Markov chain-based energy management for a hybrid tracked vehicle with speedy Q-learning,” Energy, vol. 160, pp. 544–555, 2018. doi: 10.1016/j.energy.2018.07.022
|
[14] |
H. S. Ramadan, M. Becherif, and F. Claude, “Energy management improvement of hybrid electric vehicles via combined GPS/rule-based methodology,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2, pp. 586–597, 2017. doi: 10.1109/TASE.2017.2650146
|
[15] |
K. Li, F. C. Chou, and J. Y. Yen, “Real-time, energy-efficient traction allocation strategy for the compound electric propulsion system,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 3, pp. 1371–1380, 2017. doi: 10.1109/TMECH.2017.2667725
|
[16] |
M. Muratori and G. Rizzoni, “Residential demand response: dynamic energy management and time-varying electricity pricing,” IEEE Trans. Power syst., vol. 31, no. 2, pp. 1108–1117, 2016. doi: 10.1109/TPWRS.2015.2414880
|
[17] |
S. Delprat, T. Hofman, and S. Paganelli, “Hybrid vehicle energy management: singular optimal control,” IEEE Trans. Veh. Technol, vol. 66, no. 6, pp. 9654–9666, 2017. doi: 10.1109/TVT.2017.2746181
|
[18] |
L. L. Guo, B. Z. Gao, Q. F. Liu, J. H. Tang, and H. Chen, “On-line optimal control of the gearshift command for multispeed electric vehicles,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 4, pp. 1519–1530, 2017. doi: 10.1109/TMECH.2017.2716340
|
[19] |
J. H. Han, D. Kum, and Y. Park, “Synthesis of predictive equivalent consumption minimization strategy for hybrid electric vehicles based on closed-form solution of optimal equivalence factor, ” IEEE Trans. Veh. Technol., 2017.
|
[20] |
P. Nyberg, E. Frisk, and L. D. Nielsen, “Using real-world driving databases to generate driving cycles with equivalence properties,” IEEE Trans. Veh. Technol, vol. 65, no. 6, pp. 4095–4105, Jun. 2016. doi: 10.1109/TVT.2015.2502069
|
[21] |
T. Liu, X. L. Tang, H. Wang, H. Yu, and X. S. Hu, “Adaptive hierarchical energy management design for a plug-in hybrid electric vehicle,” IEEE Trans. Veh. Technol., Jul, 2019.
|
[22] |
T. Liu, Y. Zou, D. X. Liu, and F. C. Sun, “Reinforcement learning-based energy management strategy for a hybrid electric tracked vehicle,” Energies, vol. 8, no. 7, pp. 7243–7260, 2015. doi: 10.3390/en8077243
|
[23] |
M. Deniša, A. Gams, A. Ude, and T. Petric, “Learning compliant movement primitives through demonstration and statistical generalization,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 5, pp. 2581–2594, 2017.
|
[24] |
V. Mnih, K. Kavukcuoglu, D. Silver, and A. Graves, “Playing atari with deep reinforcement learning, ” arXiv preprint, arXiv: 1312.5602, 2013.
|
[25] |
M. Hagan, H. Demuth, M. Beale, and O. De Jess, Neural Network Design, Boston, MA, Martin Hagan, 2014.
|
[26] |
F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing with LSTM recurrent networks,” J. Machine Learning Research, vol. 3, no. 1, pp. 115–143, 2002.
|
[27] |
L. Li, S. X. You, C. Yang, B. J. Yan, J. Song, and Z. Chen, “Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses,” Appl Energy, vol. 162, pp. 868–879, 2016. doi: 10.1016/j.apenergy.2015.10.152
|
[28] |
F.-Y. Wang, “Artificial societies, computational experiments, and parallel systems: a discussion on computational theory of complex social-economic systems,” Complex Syst. Complex. Sci., vol. 1, no. 4, pp. 25–35, Oct. 2004.
|
[29] |
F.-Y. Wang, “toward a paradigm shift in social computing: the ACP approach,” IEEE Intell. Syst., vol. 22, no. 5, pp. 65–67, Sept.–Oct. 2007. doi: 10.1109/MIS.2007.4338496
|
[30] |
F.-Y. Wang, “Parallel control and management for intelligent transportation systems: concepts, architectures, and applications,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, pp. 630–638, Sep. 2010. doi: 10.1109/TITS.2010.2060218
|
[31] |
F.-Y. Wang and S. N. Tang, “Artificial societies for integrated and sustainable development of metropolitan systems,” IEEE Intell. Syst., vol. 19, no. 4, pp. 82–87, Jul.–Aug. 2004. doi: 10.1109/MIS.2004.22
|
[32] |
F.-Y. Wang, H. G. Zhang, and D. R. Liu, “Adaptive dynamic programming: an introduction,” IEEE Comput. Intell. Magazine, vol. 4, no. 2, pp. 39–47, Jun. 2009.
|
[33] |
T. Liu, H. L. Yu, H. Y. Guo, Y. C. Qin, and Y. Zou, “Online energy management for multimode plug-in hybrid electric vehicles,” IEEE Trans. Industrial Informatics, vol. 15, no. 7, pp. 4352–4361, Jul. 2019.
|
[34] |
P. Shan, R. Li, S. H. Ning, and Q. Yang, “Markov decision process toolbox, ” in Proc. of IEEE Int. Workshop on Open-Source Software for Scientific Computation (OSSC), Sep. 2009.
|
[35] |
L. Li, Y. L. Lin, N. N. Zheng, and F.-Y. Wang, “Parallel learning: a perspective and a framework,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 389–395, 2017. doi: 10.1109/JAS.2017.7510493
|
[36] |
C. Lv, X. S. Hu, A. Sangiovanni-Vincentelli, Y. T. Li, C. M. Martinez, and D. P. Cao, “Driving-style-based codesign optimization of an automated electric vehicle: a cyber-physical system approach,” IEEE Trans. Indus. Electron, vol. 66, no. 4, pp. 2965–2975, 2018.
|
[37] |
C. Lv, Y. Xing, C. Lu, Y. H. Liu, H. Y. Guo, H. B. Gao, and D. P. Cao, “Hybrid-learning-based classification and quantitative inference of driver braking intensity of an electrified vehicle,” IEEE Trans. Veh. Technol., vol. 67, no. 7, pp. 5718–5729, 2018.
|
[38] |
C. Lv, Y. Xing, J. Z. Zhang, X. X. Na, Y. T. Li, T. Liu, D. P. Cao, and F.-Y. Wang, “Leven-berg-marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system,” IEEE Trans. Industrial Informatics, vol. 14, no. 8, pp. 3436–3446, 2017.
|
[39] |
Y. Xing, C. Lv, H. J. Wang, D. P. Cao, E. Velenis, and F.-Y. Wang, “Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges,” IEEE Trans. Veh. Technol, vol. 68, no. 5, pp. 4377–4390, 2019.
|
[40] |
T. Liu and X. S. Hu, “A Bi-level control for energy efficiencyimprovement of a hybrid tracked vehicle,” IEEE Trans. Industrial Informatics, vol. 14, no. 4, pp. 1616–1625, 2018. doi: 10.1109/TII.2018.2797322
|