IEEE/CAA Journal of Automatica Sinica
Citation: | Mithu Sarkar, Bidyadhar Subudhi and Sandip Ghosh, "Unified Smith Predictor Based H∞ Wide-Area Damping Controller to Improve the Control Resiliency to Communication Failure," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 584-596, Mar. 2020. doi: 10.1109/JAS.2020.1003066 |
[1] |
P. Kundur, Power System Stability and Control. New Delhi, India: McGraw Hill Education Private Limited, 2010.
|
[2] |
B. Pal and B. Chaudhuri, Robust Control in Power Systems. Springer Science & Business Media, 2006.
|
[3] |
J. H. Chow, J. J. Sanchez-Gasca, H. Ren, and S. Wang, “Power system damping controller design-using multiple input signals,” IEEE Control Systems, vol. 20, no. 4, pp. 82–90, 2000. doi: 10.1109/37.856181
|
[4] |
D. Dotta, A. e Silva, and I. Decker, “Wide-area measurements-based two-level control design considering signal transmission delay,” IEEE Trans. Power Systems, vol. 24, no. 1, pp. 208–216, Feb. 2009. doi: 10.1109/TPWRS.2008.2004733
|
[5] |
I. Kamwa, R. Grondin, and Y. Hebert, “Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach,” IEEE Trans. Power Systems, vol. 16, no. 1, pp. 136–153, Feb. 2001. doi: 10.1109/59.910791
|
[6] |
B. Chaudhuri, R. Majumder, and B. C. Pal, “Wide-area measurementbased stabilizing control of power system considering signal transmission delay,” IEEE Trans. Power Systems, vol. 19, no. 4, pp. 1971–1979, 2004. doi: 10.1109/TPWRS.2004.835669
|
[7] |
W. Yao, L. Jiang, Q. Wu, J. Wen, and S. Cheng, “Delay-dependent stability analysis of the power system with a wide-area damping controller embedded,” IEEE Trans. Power Systems, vol. 26, no. 1, pp. 233–240, 2011. doi: 10.1109/TPWRS.2010.2093031
|
[8] |
S. Ghosh, K. Folly, and A. Patel, “Synchronized versus nonsynchronized feedback for speed-based wide-area pss: effect of timedelay,” IEEE Trans. Smart Grid, 2016.
|
[9] |
W. Yao, L. Jiang, J. Wen, Q. Wu, and S. Cheng, “Wide-area damping controller of facts devices for inter-area oscillations considering communication time delays,” IEEE Trans. Power Systems, vol. 29, no. 1, pp. 318–329, Jan. 2014. doi: 10.1109/TPWRS.2013.2280216
|
[10] |
H. Wu, H. Ni, and G. T. Heydt, “The impact of time delay on robust control design in power systems,” in IEEE Power Engineering Society Winter Meeting, vol. 2, 2002, pp. 1511–1516.
|
[11] |
S. Zhang and V. Vittal, “Design of wide-area power system damping controllers resilient to communication failures,” IEEE Trans. Power Systems, vol. 28, no. 4, pp. 4292–4300, 2013. doi: 10.1109/TPWRS.2013.2261828
|
[12] |
R. Majumder, B. Chaudhuri, B. C. Pal, and Q.-C. Zhong, “A unified Smith predictor approach for power system damping control design using remote signals,” IEEE Trans. Control Systems Technology, vol. 13, no. 6, pp. 1063–1068, 2005. doi: 10.1109/TCST.2005.854340
|
[13] |
W. Yao, L. Jiang, J. Wen, Q. Wu, and S. Cheng, “Wide-area damping controller for power system interarea oscillations: a networked predictive control approach,” IEEE Trans. Control Systems Technology, vol. 23, no. 1, pp. 27–36, 2015. doi: 10.1109/TCST.2014.2311852
|
[14] |
A. Farraj, E. Hammad, and D. Kundur, “A cyber-physical control framework for transient stability in smart grids,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1205–1215, 2018. doi: 10.1109/TSG.2016.2581588
|
[15] |
Y. Shen, W. Yao, J. Wen, H. He, and L. Jiang, “Resilient widearea damping control using GrHDP to tolerate communication failures,” IEEE Trans. Smart Grid, 2018. doi: 10.1109/TSG.2018.2803822
|
[16] |
Y. Shen, W. Yao, J. Wen, and H. He, “Adaptive wide-area power oscillation damper design for photovoltaic plant considering delay compensation,” IET Generation,Transmission &Distribution, vol. 11, no. 18, pp. 4511–4519, 2017.
|
[17] |
M. E. Raoufat, K. Tomsovic, and S. M. Djouadi, “Virtual actuators for wide-area damping control of power systems,” IEEE Trans. Power Systems, vol. 31, no. 6, pp. 4703–4711, 2016. doi: 10.1109/TPWRS.2015.2506345
|
[18] |
S. Khosravani, I. N. Moghaddam, A. Afshar, and M. Karrari, “Widearea measurement-based fault tolerant control of power system during sensor failure,” Electric Power Systems Research, vol. 137, pp. 66–75, 2016. doi: 10.1016/j.jpgr.2016.03.024
|
[19] |
F. R. S. Sevilla, I. Jaimoukha, B. Chaudhuri, and P. Korba, “Faulttolerant wide-area control for power oscillation damping,” in Proc. IEEE Power and Energy Society General Meeting, 2012, pp. 1–8.
|
[20] |
M. E. Bento, D. Dotta, R. Kuiava, and R. A. Ramos, “A procedure to design fault-tolerant wide-area damping controllers,” IEEE Access, vol. 6, pp. 23383–23405, 2018. doi: 10.1109/ACCESS.2018.2828609
|
[21] |
F. S. Sevilla, I. Jaimoukha, B. Chaudhuri, and P. Korba, “Power oscillation damping improvement using an iterative fault-tolerant widearea control approach,” IFAC Proceedings Volumes, vol. 45, no. 21, pp. 156–161, 2012. doi: 10.3182/20120902-4-FR-2032.00029
|
[22] |
B. Chaudhuri and B. C. Pal, “Robust damping of multiple swing modes employing global stabilizing signals with a TCSC,” IEEE Trans. Power Systems, vol. 19, no. 1, pp. 499–506, 2004. doi: 10.1109/TPWRS.2003.821463
|
[23] |
Y. Zhang and A. Bose, “Design of wide-area damping controllers for interarea oscillations,” IEEE Trans. Power Systems, vol. 23, no. 3, pp. 1136–1143, Aug. 2008. doi: 10.1109/TPWRS.2008.926718
|
[24] |
V. Toochinda, C. Hollott, and Y. Chait, “Disturbance attenuation in a sito feedback control system,” in Proc. 2002 American Control Conf., vol. 1, pp. 481–486.
|
[25] |
Q.-C. Zhong, “H∞ control of dead-time systems based on a transformation,” Automatica, vol. 39, no. 2, pp. 361–366, 2003. doi: 10.1016/S0005-1098(02)00225-X
|
[26] |
O. Smith, “Closer control of loops with dead time,” Chem. Eng. Prog., vol. 53, no. 5, pp. 217–219, 1957.
|
[27] |
K. Watanabe and M. Ito, “A process-model control for linear systems with delay,” IEEE Trans. Automatic Control, vol. 26, no. 6, pp. 1261–1269, 1981. doi: 10.1109/TAC.1981.1102802
|
[28] |
Q.-C. Zhong and G. Weiss, “A unified Smith predictor based on the spectral decomposition of the plant,” Int. J. Control, vol. 77, no. 15, pp. 1362–1371, 2004. doi: 10.1080/0020717042000297171
|
[29] |
S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. Wiley New York, 2007, vol. 2.
|
[30] |
M. Chilali and P. Gahinet, “H∞ design with pole placement constraints: an LMI approach,” IEEE Trans. Automatic Control, vol. 41, no. 3, pp. 358–367, 1996. doi: 10.1109/9.486637
|
[31] |
B. C. Pal, A. H. Coonick, I. M. Jaimoukha, and H. El-Zobaidi, “A linear matrix inequality approach to robust damping control design in power systems with superconducting magnetic energy storage device,” IEEE Trans. Power Systems, vol. 15, no. 1, pp. 356–362, 2000. doi: 10.1109/59.852144
|
[32] |
A. Hamdan and A. Elabdalla, “Geometric measures of modal controllability and observability of power system models,” Electric Power Systems Research, vol. 15, no. 2, pp. 147–155, 1988. doi: 10.1016/0378-7796(88)90018-1
|
[33] |
M. Pai, Energy Functionan Analysis for Power System Stability. Springer Science Business Media, 1989.
|
[34] |
R. Jabr, B. Pal, N. Martins, and J. Ferraz, “Robust and coordinated tuning of power system stabiliser gains using sequential linear programming,” IET Generation,Transmission and Distribution, vol. 4, no. 8, pp. 893–904, 2010. doi: 10.1049/iet-gtd.2009.0669
|