A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 2
Mar.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Nikhil Agrawal, Anil Kumar and Varun Bajaj, "A New Design Approach for Nearly Linear Phase Stable IIR Filter using Fractional Derivative," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 527-538, Mar. 2020. doi: 10.1109/JAS.2020.1003054
Citation: Nikhil Agrawal, Anil Kumar and Varun Bajaj, "A New Design Approach for Nearly Linear Phase Stable IIR Filter using Fractional Derivative," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 527-538, Mar. 2020. doi: 10.1109/JAS.2020.1003054

A New Design Approach for Nearly Linear Phase Stable IIR Filter using Fractional Derivative

doi: 10.1109/JAS.2020.1003054
More Information
  • In this paper, a new design method for digital infinite impulse response (IIR) filters with nearly linear-phase response is presented using fractional derivative constraints (FDCs). In the proposed method, design problem of an IIR filter is constructed as the minimization of phase error between the desired and designed phase response of an allpass filter (APF) such that the designed lowpass filter (LPF) or highpass filter (HPF) yields less passband (ep), and stopband errors (es) with optimal stopband attenuation (As). In order to have accurate passband (pb) response, FDCs are imposed on appropriate reference frequency, where the optimality of these FDCs are ensured by using a new greedy based sorting mechanism. The simulated results reflect the efficiency of the proposed method in term of improved passband response along with better transition width. However, small reduction in As is observed within the allowable limit, when compared to non-fractional design approach, but the designed filter remains immune to wordlength (WL) effect.

     

  • loading
  • [1]
    B. Gao, W. L. Woo, and B. W.-K. Ling, “Machine learning source separation using maximum a posteriori nonnegative matrix factorization,” IEEE Trans. Cybern., vol. 44, no. 7, pp. 1169–1179, Jul. 2014. doi: 10.1109/TCYB.2013.2281332
    [2]
    B. Gao, P. Lu, W. L. Woo, G. Y. Tian, Y. Zhu, and M. Johnston, “Variational bayesian subgroup adaptive sparse component extraction for diagnostic imaging system,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8142–8152, Oct. 2018. doi: 10.1109/TIE.2018.2801809
    [3]
    A. Antoniou, Digital Filters: Analysis, Design, and Applications, 2nd ed. New York: McGraw-Hil, 2000.
    [4]
    L. Eriksson, M. Allie, and R. Greiner, “The selection and application of an IIR adaptive filter for use in active sound attenuation,” IEEE Trans. Acoust., vol. 35, no. 4, pp. 433–437, Apr. 1987. doi: 10.1109/TASSP.1987.1165165
    [5]
    D. M. Etter, M. Hicks, and K. Cho, “Recursive adaptive filter design using an adaptive genetic algorithm,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol. 7, 1982.
    [6]
    T. Kobayashi and S. Imai, “Complex Chebyshev approximation for IIR digital filters using an iterative WLS technique,” in Proc. Int. Conf. Acoustics, Speech, and Signal Processing, 1990, pp. 1321–1324.
    [7]
    K. S. Tang, K. F. Man, S. Kwong, and Z. F. Liu, “Design and optimization of IIR filter structure using hierarchical genetic algorithms,” IEEE Trans. Ind. Electron., vol. 45, no. 3, pp. 481–487, Jun. 1998. doi: 10.1109/41.679006
    [8]
    Y. Yang and X. J. Yu, “Cooperative coevolutionary genetic algorithm for digital IIR filter design,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1311–1318, Jun. 2007. doi: 10.1109/TIE.2007.893063
    [9]
    Y.-C. Lim, J.-H. Lee, C. K. Chen, and R.-H. Yang, “A weighted least squares algorithm for quasi-equiripple FIR and IIR digital filter design,” IEEE Trans. Signal Process., vol. 40, no. 3, pp. 551–558, Mar. 1992. doi: 10.1109/78.120798
    [10]
    J. L. Sullivan and J. W. Adams, “PCLS IIR digital filters with simultaneous frequency response magnitude and group delay specifications,” IEEE Trans. Signal Process., vol. 46, no. 11, pp. 2853–2861, 1998. doi: 10.1109/78.726800
    [11]
    M. C. Lang, “Least-squares design of IIR filters with prescribed magnitude and phase responses and a pole radius constraint,” IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3109–3121, Nov. 2000. doi: 10.1109/78.875468
    [12]
    S.-T. Pan, “Evolutionary computation on programmable robust IIR filter pole-placement design,” IEEE Trans. Instrum. Meas., vol. 60, no. 4, pp. 1469–1479, Apr. 2011. doi: 10.1109/TIM.2010.2086850
    [13]
    Y. Wang, B. Li, and Y. Chen, “Digital IIR filter design using multiobjective optimization evolutionary algorithm,” Appl. Soft Comput., vol. 11, no. 2, pp. 1851–1857, 2011. doi: 10.1016/j.asoc.2010.05.034
    [14]
    L. Rabiner, N. Graham, and H. Helms, “Linear programming design of IIR digital filters with arbitrary magnitude function,” IEEE Trans. Acoust., vol. 22, no. 2, pp. 117–123, Apr. 1974. doi: 10.1109/TASSP.1974.1162558
    [15]
    W.-S. Lu, “Design of stable IIR digital filters with equiripple passbands and peak-constrained least-squares stopbands,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 46, no. 11, pp. 1421–1426, 1999. doi: 10.1109/82.803482
    [16]
    W.-S. Lu and T. Hinamoto, “Optimal design of IIR digital filters with robust stability using conic-quadraticprogramming updates,” IEEE Trans. Signal Process., vol. 51, no. 6, pp. 1581–1592, Jun. 2003. doi: 10.1109/TSP.2003.811229
    [17]
    A. Jiang and H. Kwan, “Minimax IIR digital filter design using SOCP,” in Proc. IEEE Int. Symp. Circuits and Systems, 2008, pp. 2454 – 2457.
    [18]
    A. Jiang, H. K. Kwan, Y. Zhu, N. Xu, and X. Liu, “Minimax design of IIR digital filters using partial second-order factor updates,” in Proc. IEEE Int. Conf. Digital Signal Processing, 2015, pp. 1 – 5.
    [19]
    X. Lai and Z. Lin, “Minimax phase error design of IIR digital filters with prescribed magnitude and phase responses,” IEEE Trans. Signal Process., vol. 60, no. 2, pp. 980–986, Feb. 2012. doi: 10.1109/TSP.2011.2175389
    [20]
    N. Karaboga and B. Cetinkaya, “Design of minimum phase digital IIR filters by using genetic algorithm,” in Proc. 6th Nordic Signal Processing Symp. NORSIG 2004, pp. 29–32.
    [21]
    N. Karaboga, “A new design method based on artificial bee colony algorithm for digital IIR filters,” J. Franklin Inst., vol. 346, no. 4, pp. 328–348, 2009. doi: 10.1016/j.jfranklin.2008.11.003
    [22]
    J.-T. Tsai, J.-H. Chou, and T.-K. Liu, “Optimal design of digital IIR filters by using hybrid taguchi genetic algorithm,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 867–879, Jun. 2006. doi: 10.1109/TIE.2006.874280
    [23]
    C.-W. Tsai, C.-H. Huang, and C.-L. Lin, “Structure-specified IIR filter and control design using real structured genetic algorithm,” Appl. Soft Comput., vol. 9, no. 4, pp. 1285–1295, Sep. 2009. doi: 10.1016/j.asoc.2009.04.001
    [24]
    S. K. Saha, R. Kar, D. Mandal, and S. P. Ghoshal, “An efficient craziness based particle swarm optimization technique for optimal IIR filter design,” Trans. Computational Science, 2013, vol. 8160, pp. 230 – 252.
    [25]
    N. Agrawal, A. Kumar, V. Bajaj, and G. K. Singh, “High order stable infinite impulse response filter design using cuckoo search algorithm,” Int. J. Autom. Comput., vol. 14, no. 5, pp. 589–602, Oct. 2017. doi: 10.1007/s11633-017-1091-x
    [26]
    D. Gong, Y. Zhang, and C. Qi, “Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm,” Int. J. Electr. Power Energy Syst., vol. 32, no. 6, pp. 607–614, 2010. doi: 10.1016/j.ijepes.2009.11.017
    [27]
    L. Cao, D. Zhang, S. Tang, and F. Deng, “A practical parameter determination strategy based on improved hybrid PSO algorithm for higher-order sliding mode control of air-breathing hypersonic vehicles,” Aerosp. Sci. Technol., vol. 59, pp. 1–10, 2016. doi: 10.1016/j.ast.2016.10.001
    [28]
    D. S. Sidhu, J. S. Dhillon, and D. Kaur, “Hybrid heuristic search method for design of digital IIR filter with conflicting objectives,” Soft Comput., Jan. 2016.
    [29]
    N. Agrawal, A. Kumar, and V. Bajaj, “Design of digital IIR filter with low quantization error using hybrid optimization technique,” Soft Comput., vol. 21, no. 7, 2017.
    [30]
    I. W. Selesnick, “Low-pass filters realizable as all-pass sums: design via a new flat delay filter,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 46, no. 1, pp. 40–50, 1999. doi: 10.1109/82.749080
    [31]
    A. Djebbari, J. M. Rouvaen, A. Djebbari, M. F. Belbachir, and S. A. Elahmar, “A new approach to the design of limit cycle-free IIR digital filters using eigenfilter method,” Signal Processing, vol. 72, no. 3, pp. 193–198, Feb. 1999. doi: 10.1016/S0165-1684(98)00180-7
    [32]
    L.-W. Chen, Y.-D. Jou, and S.-S. Hao, “Design of two-channel quadrature mirror filter banks using minor component analysis algorithm,” Circuits,Syst. Signal Process., vol. 34, no. 5, pp. 1549–1569, May 2015. doi: 10.1007/s00034-014-9914-2
    [33]
    Y. Chen and B. M. Vinagre, “A new IIR-type digital fractional order differentiator,” Signal Processing, vol. 83, no. 11, pp. 2359–2365, Nov. 2003. doi: 10.1016/S0165-1684(03)00188-9
    [34]
    Z. Z. Yang and J. L. Zhou, “An improved design for the IIR-type digital fractional order differential filter,” Int. Seminar Future BioMedical Information Engineering, 2008, pp. 473 – 476.
    [35]
    J. Zou, X. H. Wu, Z. Y. Wang, and D. S. Luo, “A new IIR differentiator of fractional order,” J. Chengdu Univ. Inf. Technol., vol. 2, 2008.
    [36]
    C.-C. Tseng, “Design of FIR and IIR fractional order Simpson digital integrators,” Signal Processing, vol. 87, no. 5, pp. 1045–1057, May 2007. doi: 10.1016/j.sigpro.2006.09.006
    [37]
    A. Charef, A. Djouambi, and D. Idiou, “Linear fractional order system identification using adjustable fractional order differentiator,” IET Signal Process., vol. 8, no. 4, pp. 398–409, Jun. 2014. doi: 10.1049/iet-spr.2013.0002
    [38]
    R. E. Gutiérrez, J. M. Rosário, and J. Tenreiro Machado, “Fractional order calculus: basic concepts and engineering applications,” Math. Probl. Eng., vol. 2010, pp. 1–19, 2010.
    [39]
    C.-C. Tseng and S.-L. Lee, “Design of linear phase FIR filters using fractional derivative constraints,” Signal Processing, vol. 92, no. 5, pp. 1317–1327, 2012. doi: 10.1016/j.sigpro.2011.11.030
    [40]
    C.-C. Tseng and S.-L. Lee, “Designs of two-dimensional linear phase FIR filters using fractional derivative constraints,” Signal Processing, vol. 93, no. 5, pp. 1141–1151, 2013. doi: 10.1016/j.sigpro.2012.12.006
    [41]
    C.-C. Tseng and S.-L. Lee, “Fractional derivative constrained design of FIR filter with prescribed magnitude and phase responses,” in Proc. European Conf. Circuit Theory and Design, 2013, pp. 1 – 4.
    [42]
    K. Baderia, A. Kumar, and G. Kumar Singh, “Hybrid method for designing digital FIR filters based on fractional derivative constraints,” ISA Trans., vol. 58, pp. 493–508, Sept. 2015. doi: 10.1016/j.isatra.2015.05.015
    [43]
    B. Kuldeep, V. K. Singh, A. Kumar, and G. K. Singh, “Design of two channel filter bank using nature inspired optimization based fractional derivative constraints,” ISA Trans., vol. 54, pp. 101–16, Jan. 2015. doi: 10.1016/j.isatra.2014.06.005
    [44]
    B. Kuldeep, A. Kumar, and G. K. Singh, “Design of multi-channel Cosine-Modulated filter bank based on fractional derivative constraints using Cuckoo search algorithm,” Circuits,Syst. Signal Process., vol. 34, no. 10, pp. 3325–3351, 2015. doi: 10.1007/s00034-015-0008-6
    [45]
    K. Baderia, A. Kumar, and G. K. Singh, “Design of quadrature mirror filter bank using polyphase components based on optimal fractional derivative constraints,” AEU - Int. J. Electron. Commun., vol. 69, no. 9, pp. 1254–1264, 2015. doi: 10.1016/j.aeue.2015.05.006
    [46]
    K. B. Oldham and J. Spanier, The Fractional Calculus. New York: Academic Press, 1974.
    [47]
    M. D. Ortigueira and J. A. Tenreiro Machado, “What is a fractional derivative?” J. Comput. Phys., vol. 293, pp. 4–13, 2015. doi: 10.1016/j.jcp.2014.07.019
    [48]
    E. C. de Oliveira and J. A. Tenreiro Machado, “A review of definitions for fractional derivatives and integral,” Math. Probl. Eng., vol. 2014, pp. 1–6, 2014.
    [49]
    D. Tavares, R. Almeida, and D. F. M. Torres, “Constrained fractional variational problems of variable order,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 80–88, Jan. 2017. doi: 10.1109/JAS.2017.7510331
    [50]
    J. L. Sullivan and J. W. Adams, “PCLS IIR digital filters with simultaneous frequency response magnitude and group delay specifications,” IEEE Trans. Signal Process., vol. 46, no. 11, pp. 2853 – 2861, 1998.
    [51]
    X. Lai and Z. Lin, “Iterative reweighted minimax phase error designs of IIR digital filters with nearly linear phases,” IEEE Trans. Signal Process., vol. 64, no. 9, pp. 2416–2428, May 2016. doi: 10.1109/TSP.2016.2521610
    [52]
    W.-S. Lu, S.-C. Pei, and C.-C. Tseng, “A weighted least-squares method for the design of stable 1-D and 2-D IIR digital filters,” IEEE Trans. Signal Process., vol. 46, no. 1, 1998.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views (1351) PDF downloads(88) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return