IEEE/CAA Journal of Automatica Sinica
Citation: | Khac Duc Do, "Stability in Probability and Inverse Optimal Control of Evolution Systems Driven by Lévy Processes," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 405-419, Mar. 2020. doi: 10.1109/JAS.2020.1003036 |
[1] |
D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2nd ed., 2009.
|
[2] |
E. Pardoux, “Stochastic partial differential equations and filtering of diffusion processes,” Stochastics, vol. 3, pp. 127–167, 1979.
|
[3] |
K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations With Applications, Boca Raton, FL: Chapman and Hall/CRC, 2006.
|
[4] |
P. L. Chow, Stochastic Partial Differential Equations. Boca Raton: Chapman & Hall/CRC, 2007.
|
[5] |
G. D. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge, UK: Cambridge University Press, 1992.
|
[6] |
R. Liu and V. Mandrekar, “Stochastic semilinear evolution equations: Lyapunov function, stability and ultimate boundedness,” J. Mathematical Analysis and Applications, vol. 212, no. 2, pp. 537–553, 1997. doi: 10.1006/jmaa.1997.5534
|
[7] |
L. Gawarecki and V. Mandrekar, Stochastic Differential Equations in Infinite Dimensions With Applications to Stochastic Partial Differential Equations, Berlin: Springer, 2011.
|
[8] |
K. D. Do and A. D. Lucey, “Stochastic stabilization of slender beams in space: modeling and boundary control,” Automatica, vol. 91, pp. 279–293, 2018. doi: 10.1016/j.automatica.2018.01.017
|
[9] |
K. D. Do, “Stability of nonlinear stochastic distributed parameter systems and its applications,” J. Dynamic Systems,Measurement,and Control, vol. 138, pp. 101010: 1–12, 1010.
|
[10] |
K. D. Do, “Stochastic boundary control design for extensible marine risers in three dimensional space,” Automatica, vol. 77, pp. 184–197, 2017. doi: 10.1016/j.automatica.2016.11.032
|
[11] |
Z. Brzézniak, W. Liu, and J. Zhu, “Strong solutions for spde with locally monotone coefficients driven by Lévy noise,” Nonlinear Analysis:Real World Applications, vol. 17, pp. 283–310, 2014. doi: 10.1016/j.nonrwa.2013.12.005
|
[12] |
Z. Dong and T. Xu, “One-dimensional stochastic burgers equation driven by Lévy processes,” J. Functional Analysis, vol. 243, pp. 631–678, 2007. doi: 10.1016/j.jfa.2006.09.010
|
[13] |
M. Röckner and T. Zhang, “Stochastic evolution equation of jump type: existence, uniqueness and large deviation principles,” Potential Analysis, vol. 26, pp. 255–279, 2007. doi: 10.1007/s11118-006-9035-z
|
[14] |
S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations With Levy Noise: An Evolution Equation Approach, Cambridge: Cambridge University Press, 2007.
|
[15] |
H. Li and Q. Zhu, “The pth moment exponential stability and almost surely exponential stability of stochastic differential delay equations with poisson jump,” J. Mathematical Analysis and Applications, vol. 471, pp. 197–210, 2019. doi: 10.1016/j.jmaa.2018.10.072
|
[16] |
Q. Zhu, “Stability analysis of stochastic delay differential equations with Lévy noise,” Systems &Control Letters, vol. 118, pp. 62–68, 2018.
|
[17] |
Q. Zhu, “Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching,” Int. J. Control, vol. 90, pp. 1703–1712, 2017. doi: 10.1080/00207179.2016.1219069
|
[18] |
Q. Zhu, “Asymptotic stability in the pth moment for stochastic differential equations with Lévy noise,” J. Mathematical Analysis and Applications, vol. 416, pp. 126–142, 2014. doi: 10.1016/j.jmaa.2014.02.016
|
[19] |
H. Khalil, Nonlinear Systems, Prentice Hall, 2002.
|
[20] |
P. Kokotovic and M. Arcak, “Constructive nonlinear control: a history perspective,” Automatica, vol. 37, no. 5, pp. 637–662, 2001. doi: 10.1016/S0005-1098(01)00002-4
|
[21] |
R. Sepulchre, M. Jankovic, and P. Kokotovic, Constructive Nonlinear Control, New York: Springer, 1997.
|
[22] |
M. Krstic and H. Deng, Stabilization of Nonlinear Uncertain Systems, London: Springer, 1998.
|
[23] |
K. D. Do and A. D. Lucey, “Inverse optimal control of evolution systems and its application to extensible and shearable slender beams,” IEEE/CAA J. Autom. Sinica, vol. 6, pp. 395–409, 2019. doi: 10.1109/JAS.2019.1911381
|
[24] |
E. D. Sontag, “Smooth stabilization implies comprime factorization,” IEEE Trans. Automatic Control, vol. 34, no. 4, pp. 435–443, 1989. doi: 10.1109/9.28018
|
[25] |
K. D. Do, “Global inverse optimal stabilization of stochastic nonholonomic systems,” Systems &Control Letters, vol. 75, pp. 41–55, 2015.
|
[26] |
H. Deng, M. Krstic, and R. Williams, “Stabilization of stochastic nonlinear systems driven by noise of unknown covariance,” IEEE Trans. Automatic Control, vol. 46, no. 8, pp. 1237–1253, 2001. doi: 10.1109/9.940927
|
[27] |
M. Krstic, “On global stabilization of Burgers’ equation by boundary control,” Systems &Control Letters, vol. 37, pp. 123–141, 1999.
|
[28] |
K. D. Do, “Inverse optimal gain assignment control of evolution systems and its application to boundary control of marine risers,” Automatica, vol. 106, pp. 242–256, 2019. doi: 10.1016/j.automatica.2019.05.020
|
[29] |
F. B. Hanson, Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis, and Computation, Society for Industrial and Applied Mathematics, 2007.
|
[30] |
C. Prevot and M. Rockner, A Concise Course on Stochastic Partial Differential Equations, Berlin: Springer, 2007.
|
[31] |
G. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge: Cambridge University Press, 2nd ed., 1989.
|
[32] |
W. H. Fleming, Distributed Parameter Stochastic Systems in Population Biology, Berlin-New York: Lecture Notes in Economics and Mathematical Systems, vol. 107, Springer, 1975.
|
[33] |
K. D. Do, “Inverse optimal control of stochastic systems driven by Lévy processes,” Automatica, vol. 107, pp. 539–550, Sept. 2019.
|
[34] |
X. Mao, Stochastic Differential Equations and Applications, Cambridge: Woodhead Publishing, 2nd ed., 2007.
|
[35] |
I. Gyongy and N. V. Krylov, “On stochastic equations with respect to semimartingales I,” Stochastics, vol. 4, pp. 1–21, 1980. doi: 10.1080/03610918008833154
|
[36] |
R. Khasminskii, Stochastic Stability of Differential Equations, Rockville MD: S&N Int., 1980.
|
[37] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Oxford, UK: Academic Press, 2nd ed., 2003.
|
[38] |
P. E. Protter, Stochastic Integration and Differential Equations, Berlin: Springer, 2nd ed., 2005.
|
[39] |
P. Protter, Stochastic Integration and Differential Equations. Springer Verlag, 2nd ed., 2005.
|