IEEE/CAA Journal of Automatica Sinica
Citation: | Y. G. Yang, L. F. Liao, H. Yang, and S. Li, "An Optimal Control Strategy for Multi-UAVs Target Tracking and Cooperative Competition," IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1931-1947, Dec. 2021. doi: 10.1109/JAS.2020.1003012 |
[1] |
E. Dun, B. Ferguson, and C. Beveridge, “Apical dominance and shoot branching. Divergent opinions or divergent mechanisms?” Plant Physiology, vol. 142, no. 3, pp. 812–819, 2006. doi: 10.1104/pp.106.086868
|
[2] |
M. Enquist and S. Ghirlanda, Neural Networks and Animal Behavior. Princetion University Press, Princeton, USA. 2005.
|
[3] |
S. Ottone and F. Ponzano, “Competition and cooperation in markets. The experimental case of a winners-take-all setting,” J. Socio-Economics, vol. 39, no. 2, pp. 163–170, 2010. doi: 10.1016/j.socec.2009.10.001
|
[4] |
S. Li, Y. P. Wang, J. G. Yu, and B. Liu, “A nonlinear model to generate the Winners-take-all competition,” Communications in Nonlinear Science &Numerical Simulation, vol. 18, no. 3, pp. 435–442, 2013.
|
[5] |
U. Rutishauser, R. J. Douglas, J. J. Slotine, “Collective stability of networks of winnertake-all circuits,” Neural Comput, vol. 23, no. 3, pp. 735–773, 2011.
|
[6] |
S. Li, M. C. Zhou, X. Luo, and Z. H. You, “Distributed winners-take-all in dynamic networks,” IEEE Trans. Automatic Control, vol. 62, no. 2, pp. 577–589, 2017. doi: 10.1109/TAC.2016.2578645
|
[7] |
S. Li, Y. M. Li, and Z. Wang, “A class of finite-time dual neural networks for solving quadratic programming problems and its winners-take-all application,” Neural Networks the Official J. the Int. Neural Network Society, vol. 39, pp. 27–39, 2013. doi: 10.1016/j.neunet.2012.12.009
|
[8] |
H. Wang, Y. J. Huang, A. Khajepour, Y. B. Zhang, Y. Rasekhipour, and D. P. Cao, “Crash mitigation in motion planning for autonomous vehicles,” IEEE Trans. Intelligent Transportation Systems, vol. 20, no. 9, pp. 3313–3323, Sept. 2019. doi: 10.1109/TITS.2018.2873921
|
[9] |
L. Cao, D. Qiao, and J. W. Xu, “Suboptimal artificial potential function sliding mode control for spacecraft rendezvous with obstacle avoidance,” Acta Astronautica, vol. 143, pp. 133–146, Feb. 2018. doi: 10.1016/j.actaastro.2017.11.022
|
[10] |
Y. Liu, P. F. Huang, F. Zhang, and Y. K. Zhao, “Distributed formation control using artificial potentials and neural network for constrained multiagent systems,” IEEE Trans. Control Systems Technology, vol. 28, no. 2, pp. 697–704, Mar. 2019. doi: 10.1109/TCST.2018.2884226
|
[11] |
S. M. H. Rostami, A. K. Sangaiah, J. Wang, and X. Z. Liu, “Obstacle avoidance of mobile robots using modified artificial potential field algorithm,” EURASIP J. Wireless Communications and Networking, 2019. DOI: 10.1186/s13638-019-1396-2
|
[12] |
F. Zhou, Y. J. Zhou, G. P. Jiang, and N. Cao, “Adaptive tracking control of quadrotor UAV system with input constraints,” in Proc. 30th China Conf. Control and Decision-Making, pp. 5774–5779, Jun. 2018.
|
[13] |
L. Qiao and W. D. Zhang, “Double-loop integral terminal sliding mode tracking control for UUVs with adaptive dynamic compensation of uncertainties and disturbances,” IEEE J. Oceanic Engineering, vol. 99, pp. 1–25, 2018.
|
[14] |
Y. Zhang, Z. Q. Chen, X. H. Zhang, Q. L. Sun, and M. W. Sun, “A novel control scheme for quadrotor UAV based upon active disturbance rejection control,” Aerospace Science &Technology, vol. 79, pp. 601–609, Aug. 2018. doi: 10.1016/j.ast.2018.06.017
|
[15] |
X. L. Shao, J. Liu, H. L. Cao, C. Shen, and H. L. Wang, “Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer,” Int. J. Robust &Nonlinear Control, vol. 28, no. 7, 2018.
|
[16] |
J. M. C. Francisco, T. S. Jorge, C. R. Inmaculada, G. F. Alfonso, M. P. B. José, B. S. Irene, and L. G. Francisca, “Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management,” Remote Sensing, vol. 7, no. 10, pp. 12793–12814, 2015. doi: 10.3390/rs71012793
|
[17] |
R. Kikutis, J. Stankunas, D. Rudinskas, and T. Masiulionis, “Adaptation of dubins paths for uav ground obstacle avoidance when using a low cost on-board GNSS sensor,” Sensors, vol. 17, no. 10, Article No. 2223(1–23), 2017.
|
[18] |
L. Sun and Z. W. Zheng, “Nonlinear adaptive trajectory tracking control for a stratospheric airship with parametric uncertainty,” Nonlinear Dynamics, vol. 82, no. 3, pp. 1–12, 2015.
|
[19] |
F. Y. Chen, R. Q. Jiang, K. K. Zhang, and B. Jiang, “Robust backstepping sliding mode control and observer-based fault estimation for a quadrotor UAV,” IEEE Trans. Industrial Electronics, vol. 63, no. 8, pp. 1–12, 2016.
|
[20] |
X. Fang, A. G. Wu, Y. J. Shang, and N. Dong, “A novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbancel,” Nonlinear Dynamics, vol. 83, no. 1–2, pp. 1053–1068, Jan. 2016. doi: 10.1007/s11071-015-2387-4
|
[21] |
K. P. Lin and K. C. Hung, “An efficient fuzzy weighted average algorithm for the military UAV selecting under group decision-making,” Knowledge-Based Systems, vol. 24, no. 6, pp. 877–889, 2011. doi: 10.1016/j.knosys.2011.04.002
|
[22] |
J. Gomez and M. Jamshidi, “Fuzzy adaptive control for a UAV,” J. Intelligent &Robotic Systems, vol. 62, no. 2, pp. 271–293, 2011.
|
[23] |
J. Azinheira and A. Moutinho, “Hover control of an UAV with backstepping design including input saturations,” IEEE Trans. Control Systems Technology, vol. 16, no. 3, pp. 517–526, 2008. doi: 10.1109/TCST.2007.908209
|
[24] |
B. Zhao, B. Xian, Y. Zhang, and X. Zhang, “Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology,” IEEE Trans. Industrial Electronics, vol. 62, no. 5, pp. 2891–2902, 2015. doi: 10.1109/TIE.2014.2364982
|
[25] |
B. Xian, C. Diao, B. Zhao, and Y. Zhang, “Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation,” Nonlinear Dynamics, vol. 79, no. 4, pp. 2735–2752, 2015. doi: 10.1007/s11071-014-1843-x
|
[26] |
S. Li, B. Liu, and Y. M. Li, “Selective positive-negative feedback produces the winners-take-all competition in recurrent neural networks,” IEEE Trans. Neural Networks &Learning Systems, vol. 24, no. 2, pp. 301–309, 2013.
|
[27] |
R. Xu and U. Ozguner, “Sliding mode control of a class of under actuated systems,” Automatica, vol. 44, no. 1, pp. 233–241, 2008. doi: 10.1016/j.automatica.2007.05.014
|
[28] |
K. Passino and S. Yurkovich, Fuzzy Control. Tsinghua University Press., 2001.
|
[29] |
J. Anagnost and C. Desoer, “An elementary proof of the Routh-Hurwitz stability criterion,” Circuits,Systems and Signal Processing, vol. 10, no. 1, pp. 101–114, 1991. doi: 10.1007/BF01183243
|
[30] |
X. H. Wang and J. K. Liu, Differentiator Design and Application-Signal Filtering and Differentiation. Electronic Industry Press, China., pp. 60–71. 2010.
|
[31] |
H. Khalil, “Nonlinear Systems Third Edition. Upper Saddle River, ” NJ: Prentice-Hall., 2002.
|
[32] |
D. Q. Zhu and M. Z. Yan, “Survey on technology of mobile robot path planning,” Control and Decision, vol. 25, no. 7, pp. 961–967, 2010.
|
[33] |
S. Bhat and D. Bernstein, “Continuous finite-time stabilization of the translational and rotational double integrators,” IEEE Trans. Autom. Control, vol. 43, no. 5, pp. 678–682, 1998. doi: 10.1109/9.668834
|
[34] |
Y. G. Hong, “Finite-time stabilization and stabilizability of a class of controllable systems,” Systems &Control Letters, vol. 46, no. 4, pp. 231–236, 2002.
|
[35] |
X. Q. Huang, W. Lin, and B. Yang, “Global finite-time stabilization of a class of uncertain nonlinear systems,” Automatica, vol. 41, no. 5, pp. 881–888, 2005. doi: 10.1016/j.automatica.2004.11.036
|
[36] |
A. Levant, “Robust exact differentiation via sliding mode technique,” Automatica, vol. 34, no. 3, pp. 379–384, 1998. doi: 10.1016/S0005-1098(97)00209-4
|
[37] |
H. Khalil, “Robust servomechanism output feedback controllers for feedback linearizable systems,” Automatica, vol. 30, no. 10, pp. 1587–1599, 1994. doi: 10.1016/0005-1098(94)90098-1
|