IEEE/CAA Journal of Automatica Sinica
Citation: | Xia Chen, Zhan-Li Sun, Kin-Man Lam and Zhigang Zeng, "A Local Deviation Constraint Based Non-Rigid Structure From Motion Approach," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1455-1464, Sept. 2020. doi: 10.1109/JAS.2020.1003006 |
[1] |
X. Wang and H. Duan, “Hierarchical visual attention model for saliency detection inspired by avian visual pathways,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 540–552, 2019. doi: 10.1109/JAS.2017.7510664
|
[2] |
Y. Tian, X. Li, K. Wang, and F.-Y. Wang, “Training and testing object detectors with virtual images,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 539–546, 2018. doi: 10.1109/JAS.2017.7510841
|
[3] |
Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, “Object detection with deep learning: A review,” IEEE Trans. Neural Networks and Learning Systems, 2019. doi: 10.1109/TNNLS.2018.2876865
|
[4] |
D. Herrera, F. Roberti, M. Toibero M, and R. Carelli, “Human interaction dynamics for its use in mobile robotics: Impedance control for leaderfollower formation,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 696–703, 2017. doi: 10.1109/JAS.2017.7510631
|
[5] |
Z. Q. Zhao, H. Glotin, Z. Xie, J. Gao, and X. Wu, “Cooperative sparse representation in two opposite directions for semi-supervised image annotation,” IEEE Trans. Image Processing, vol. 21, no. 9, pp. 4218–4231, 2012. doi: 10.1109/TIP.2012.2197631
|
[6] |
D. S. Huang, H. H. S. Ip, and Z. Chi, “A neural root finder of polynomials based on root moments,” Neural Computation, vol. 16, no. 8, pp. 1721–1762, 2004. doi: 10.1162/089976604774201668
|
[7] |
D. S. Huang, “A constructive approach for finding arbitrary roots of polynomials by neural networks,” IEEE Trans. Neural Networks, vol. 15, no. 2, pp. 477–491, 2004. doi: 10.1109/TNN.2004.824424
|
[8] |
X. Sun, S. Shen, H. Cui, L. Hu, and Z. Hu, “Geographic, geometrical and semantic reconstruction of urban scene from high resolution oblique aerial images,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 118–130, 2019. doi: 10.1109/JAS.2017.7510673
|
[9] |
N. Hao, H. Liao, Y. Qiu, and J. Yang, “Face super-resolution reconstruction and recognition using non-local similarity dictionary learning based algorithm,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 213–224, 2016. doi: 10.1109/JAS.2016.7451109
|
[10] |
Z. L. Sun, K. M. Lam, and Q. W. Gao, “An effective missing-data estimation approach for small-size image sequences,” IEEE Computational Intelligence Magazine, vol. 10, no. 3, pp. 10–18, 2015. doi: 10.1109/MCI.2015.2437311
|
[11] |
S. Kumar, A. Cherian, Y. Dai, and H. Li, “Scalable dense non-rigid structure-from-motion: A grassmannian perspective,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2018, pp. 254–263.
|
[12] |
Z. Zhou, F. Shi, J. Xiao, and W. Wu, “Non-rigid structure-from-motion on degenerate deformations with low-rank shape deformation model,” IEEE Trans. Multimedia, vol. 17, no. 2, pp. 171–185, 2015. doi: 10.1109/TMM.2014.2384396
|
[13] |
C. Bregler, A. Hertzmann, and H. Biermann, “Recovering non-rigid 3D shape from image streams,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2000, pp. 690–696.
|
[14] |
J. Xiao, J. Chai, and T. Kanade, “A closed-form solution to non-rigid shape and motion recovery,” Int. J. Computer Vision, vol. 67, no. 2, pp. 233–246, 2006. doi: 10.1007/s11263-005-3962-9
|
[15] |
L. Torresani, A. Hertzmann, and C. Bregler, “Nonrigid structure-frommotion: estimating shape and motion with hierarchical priors,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 5, pp. 878–892, 2008. doi: 10.1109/TPAMI.2007.70752
|
[16] |
Z. L. Sun and M. K. Lam, “Depth estimation of face images based on the constrained ICA model,” IEEE Trans. Information Forensics and Security, vol. 6, no. 2, pp. 360–370, 2011. doi: 10.1109/TIFS.2011.2118207
|
[17] |
Q. Dong and H. Wang, “Latent-smoothness nonrigid structure from motion by revisiting multilinear factorization,” IEEE Trans. Cybernetics, vol. 49, no. 9, pp. 3557–3570, 2018.
|
[18] |
Y. Dai, H. Li, and M. He, “A simple prior-free method for non-rigid structure-from-motion factorization,” Int. J. Computer Vision, vol. 107, no. 2, pp. 101–122, 2014. doi: 10.1007/s11263-013-0684-2
|
[19] |
S. Kumar, “Jumping manifolds: Geometry aware dense non-rigid structure from motion,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2019, pp. 5346–5355.
|
[20] |
J. W. Lu, G. Wang, W. H. Deng, and K. Jia, “Reconstruction-based metric learning for unconstrained face verification,” IEEE Trans. Information Forensics and Security, vol. 10, no. 1, pp. 79–89, 2015. doi: 10.1109/TIFS.2014.2363792
|
[21] |
A. Agudo, F. Moreno-Noguer, B. Calvo, and J. M. M. Montiel, “Sequential non-rigid structure from motion using physical priors,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 38, no. 5, pp. 979–994, 2016. doi: 10.1109/TPAMI.2015.2469293
|
[22] |
A. M. Gallardo, T. Collins, A. Bartoli, and F. Mathias, “Dense nonrigid structure-from-motion and shading with unknown,” in Proc. IEEE Int. Conf. Computer Vision, 2017, pp. 3884–3892.
|
[23] |
A. Agudo, M. Pijoan, and F. Moreno-Noguer, “Dust: Dual union of spatio-temporal subspaces for monocular multiple object 3D reconstruction,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2017, pp. 1513–1521.
|
[24] |
A. Agudo, M. Pijoan, and F. Moreno-Noguer, “Image collection popup: 3D reconstruction and clustering of rigid and non-rigid categories,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2018, pp. 2607–2615.
|
[25] |
I. Akhter, Y. Sheikh, and S. Khan, “In defense of orthonormality constraints for nonrigid structure from motion,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009, pp. 1534–1541.
|
[26] |
I. Akhter, Y. A. Sheikh, S. Khan, and T. Kanade, “Trajectory space: A dual representation for nonrigid structure from motion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 7, pp. 1442–1456, 2011. doi: 10.1109/TPAMI.2010.201
|
[27] |
P. F. U. Gotardo and A. M. Martinez, “Computing smooth time trajectories for camera and deformable shape in structure from motion with occlusion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 10, pp. 2051–2065, 2011.
|
[28] |
P. F. U. Gotardo and A. M. Martinez, “Non-rigid structure from motion with complementary rank-3 spaces,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2011, pp. 3065–3072.
|
[29] |
X. Zhou, M. Zhu, G. Pavlakos, S. Leonardos, K. G. Derpanis, and K. Daniilidis, “Monocap: Monocular human motion capture using a CNN coupled with a geometric prior,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 41, no. 4, pp. 901–914, 2018.
|
[30] |
Y. Wang, X. Yan, M. Jiang, and J. Zheng, “3D Non-rigid structure from motion based on space approximation in trajectory space,” Int. J. Robotics and Automation, vol. 33, no. 2, pp. 111–117, 2018.
|
[31] |
Z. Lin, M. Chen, and Y. Ma, “The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices,” UIUC Technicial Report UIUL-ENG-09-2214, 2010.
|
[32] |
M. R. Hestenes, “Multiplier and gradient methods,” J. Optimization Theory and Applications, vol. 4, no. 5, pp. 303–320, 1969. doi: 10.1007/BF00927673
|
[33] |
D. P. Bertsekas, “Constrained optimization and Lagrange multiplier methods,” New York: Academic Press, 2014.
|
[34] |
C. Li, C. L. Wang, and J. Wang, “Convergence analysis of the augmented Lagrange multiplier algorithm for a class of matrix compressive recovery,” Applied Mathematics Letters, vol. 59, pp. 12–17, 2016. doi: 10.1016/j.aml.2016.02.022
|
[35] |
O. C. Hamsici, P. F. U. Gotardo, and A. M. Martinez, “Learning spatially-smooth mappings in non-rigid structure from motion,” in Proc. European Conf. Computer Vision, 2012, pp. 260–273.
|
[36] |
M. Lee, J. Cho, and S. Oh, “Consensus of non-rigid reconstructions”, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 4670–4678.
|
[37] |
P. F. U. Gotardo, and A. M. Martinez, “Kernel non-rigid structure from motion”, in Proc. IEEE Int. Conf. Computer Vision, 2011, pp. 802–809.
|