IEEE/CAA Journal of Automatica Sinica
Citation: | Junfei Qiao, Fei Li, Cuili Yang, Wenjing Li and Ke Gu, "A Self-Organizing RBF Neural Network Based on Distance Concentration Immune Algorithm," IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 276-291, Jan. 2020. doi: 10.1109/JAS.2019.1911852 |
[1] |
J. Park and I. W. Sandberg, " Universal approximation using radial-basis-function network,” Neural Computation, vol. 3, no. 2, pp. 246–257, Jul. 1991. doi: 10.1162/neco.1991.3.2.246
|
[2] |
Y. W. Wong, K. P. Seng, and L. M. Ang, " Radial basis function neural network with incremental learning for face recognition,” IEEE Trans. Systems,Man,and Cybernetics,Part B (Cybernetics)
|
[3] |
H. G. Han, X. L. Wu, and J. F. Qiao, " Real-time model predictive control using a self-organizing neural network,” IEEE Trans. Neural Network and Learning Systems, vol. 24, no. 9, pp. 1425–1436, Sep. 2013. doi: 10.1109/TNNLS.2013.2261574
|
[4] |
V. Tomenko, " Online dimensionality reduction using competitive learning and radial basis function network,” Neural Networks, vol. 24, no. 5, pp. 501–511, Jun. 2011. doi: 10.1016/j.neunet.2011.02.007
|
[5] |
A. Alexandridis, E. Chondrodima, and H. Sarimveis, " Radial basis function network training using a nonsymmetric partition of the input space and particle swarm optimization,” IEEE Trans. Neural Networks and Learning Systems, vol. 24, no. 2, pp. 219–230, Feb. 2013. doi: 10.1109/TNNLS.2012.2227794
|
[6] |
R. Zhang, Z. B. Xu, G. B. Huang, and D. Wang, " Global convergence of online BP training with dynamic learning rate,” IEEE Trans. Neural Networks and Learning Systems, vol. 23, no. 2, pp. 330–341, Jan. 2012. doi: 10.1109/TNNLS.2011.2178315
|
[7] |
Z. B. Xu, R. Zhang, and W. F. Jing, " When does online BP training converge?” IEEE Trans. Neural Networks, vol. 20, no. 10, pp. 1529–1539, Aug. 2009. doi: 10.1109/TNN.2009.2025946
|
[8] |
B. D. Chen, S. L. Zhao, P. P. Zhu, and J. C. Principe, " Quantized kernel recursive least squares algorithm,” IEEE Trans. Neural Networks and Learning Systems, vol. 24, no. 9, pp. 1484–1491, May 2013. doi: 10.1109/TNNLS.2013.2258936
|
[9] |
M. S. Al-Batah, N. A. M. Isa, K. Z. Zamli, and K. A. Azizli, " Modified recursive least squares algorithm to train the hybrid multilayered perceptron (HMLP) network,” Applied Soft Computing, vol. 10, no. 1, pp. 236–244, Jan. 2010. doi: 10.1016/j.asoc.2009.06.018
|
[10] |
J. Jiang and Y. M. Zhang, " A novel variable-length sliding window blockwise least-squares algorithm for on-line estimation of time-varying parameters,” Int. J. Adaptive Control and Signal Processing, vol. 18, no. 6, pp. 505–521, Aug. 2004.
|
[11] |
J. X. Peng, K. Li, and G. W. Irwin, " A novel continuous forward algorithm for rbf neural modelling,” IEEE Trans. Automatic Control, vol. 52, no. 1, pp. 117–122, Jun. 2007. doi: 10.1109/TAC.2006.886541
|
[12] |
J. F. Qiao and H. G. Han, " Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach,” Automatica, vol. 48, no. 8, pp. 1729–1734, Aug. 2012. doi: 10.1016/j.automatica.2012.05.034
|
[13] |
G. B. Huang, P. Saratchandran, and N. Sundararajan, " An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks,” IEEE Trans. Systems,Man,and Cybernetics,Part B (Cybernetics)
|
[14] |
G. B. Huang, P. Saratchandran, and N. Sundararajan, " A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation,” IEEE Trans. Neural Network, vol. 16, no. 1, pp. 57–67, Jan. 2005. doi: 10.1109/TNN.2004.836241
|
[15] |
N. Vuković and Z. Miljković, " A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation,” Neural Network, vol. 46, no. 1, pp. 210–226, Jan. 2013.
|
[16] |
H. G. Han, Y. N. Guo, and J. F. Qiao, " Self-organization of a recurrent RBF neural network using an information-oriented algorithm,” Neurocomputing, vol. 225, pp. 80–91, Nov. 2016.
|
[17] |
J. Lian, Y. Lee, S. D. Sudhoff, and S. H. Zak, " Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems,” IEEE Trans. Neural Networks, vol. 19, no. 3, pp. 460–474, Mar. 2008.
|
[18] |
R. V. Babu, S. Suresh, and A. Perkis, " No-reference JPEG-image quality assessment using GAP-RBF,” Signal Processing, vol. 87, no. 6, pp. 1493–1503, Jun. 2007.
|
[19] |
H. M. Feng, " Self-generation RBFNs using evolutional PSO learning,” Neurocomputing, vol. 70, no. 1, pp. 241–251, Dec. 2006.
|
[20] |
A. Alexandridis, E. Chondrodima, and H. Sarimveis, " Radial basis function network training using a nonsymmetric partition of the input space and particle swarm optimization,” IEEE Trans. Neural Network and Learning Systems, vol. 24, no. 2, pp. 219–230, Dec. 2012.
|
[21] |
H. G. Han, W. Lu, Y. Hou, and J. F. Qiao, " An adaptive-PSO-based self-organizing RBF neural network,” IEEE Trans. Neural Network and Learning Systems, vol. 29, no. 1, pp. 104–117, Jan. 2018. doi: 10.1109/TNNLS.2016.2616413
|
[22] |
K. E. Parsopoulos and M. N. Vrahatis, " Recent approaches to global optimization problems through particle swarm optimization,” Natural Computing, vol. 1, no. 2–3, pp. 235–306, Jun. 2002.
|
[23] |
Y. Zhong, L. Zhang, B. Huang, and P. X. Li, " An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery,” IEEE Trans. Geoscience and Remote Sensing, vol. 44, no. 2, pp. 420–431, Jan. 2006. doi: 10.1109/TGRS.2005.861548
|
[24] |
M. J. Er, S. Wu, J. Lu, and H. L. Toh, " Face recognition with radial basis function (RBF) neural networks,” IEEE Trans. Neural Networks, vol. 13, no. 3, pp. 697–710, Feb. 2002. doi: 10.1109/TNN.2002.1000134
|
[25] |
T. Liu, Y. C. Wang, Z. J. Wang, and J. Meng, " Distance concentration-based artificial immune algorithm,” J. China University of Mining and Technology, vol. 15, no. 2, pp. 81–85, Jun. 2005.
|
[26] |
J. S. Chun, M. K. Kim, H. K. Jung, and S. K. Hong, " Shape optimization of electromagnetic devices using immune algorithm,” IEEE Trans. Magnetics, vol. 33, no. 2, pp. 1876–1879, Mar. 1876.
|
[27] |
R. R. Zheng, Z. Y. Mao, and X. X. Luo, " Analysis and research of improved artificial immune algorithm,” Computer Engineering and Applications, vol. 39, no. 34, pp. 35–37, Apr. 2003.
|
[28] |
Q. Z. Lin, J. Y. Chen, Z. H. Zhan, W. N. Chen, C. A. C. Coello, Y. L. Yin, C. M. Lin, and J. Zhang, " A hybrid evolutionary immune algorithm for multiobjective optimization problems,” IEEE Trans. Evolutionary Computation, vol. 20, no. 5, pp. 711–729, Oct. 2016.
|
[29] |
G. Rudolph, " Convergence analysis of canonical genetic algorithms,” IEEE Trans. Neural Network, vol. 5, no. 1, pp. 96–101, 1994. doi: 10.1109/72.265964
|
[30] |
M. Han, J. Fan, and J. Wang, " A dynamic feedforward neural network based on Gaussian particle swarm optimization and its application for predictive control,” IEEE Trans. Neural Networks, vol. 22, no. 9, pp. 1457–1468, Sep. 2011. doi: 10.1109/TNN.2011.2162341
|
[31] |
H. G. Han, S. Zhang, and J. F. Qiao, " An adaptive growing and pruning algorithm for designing recurrent neural network,” Neurocomputing, vol. 242, pp. 51–62, Jun. 2017. doi: 10.1016/j.neucom.2017.02.038
|
[32] |
T. T. Xie, H. Yu, J. Hewlett, P. Rozycki, and B. Wilamowshi, " Fast and efficient second-order method for training radial basis function network,” IEEE Trans. Neural Network and Learning Systems, vol. 23, no. 4, pp. 609–619, Apr. 2012. doi: 10.1109/TNNLS.2012.2185059
|
[33] |
H. G. Han, W. D. Zhou, J. F. Qiao, and G. Feng, " A direct self-constructing neural controller design for a class of nonlinear systems,” IEEE Trans. Neural Network and Learning Systems, vol. 26, no. 6, pp. 1312–1322, Jun. 2015. doi: 10.1109/TNNLS.2015.2401395
|
[34] |
A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, " A novel particle swarm optimization algorithm with adaptive inertia weight,” Applied Soft Computing, vol. 11, no. 4, pp. 3658–3670, Jun. 2011. doi: 10.1016/j.asoc.2011.01.037
|
[35] |
M. Taherkhani and R. Safabakhsh, " A novel stability-based adaptive inertia weight for particle swarm optimization,” Applied Soft Computing, vol. 38, pp. 281–295, Jan. 2016. doi: 10.1016/j.asoc.2015.10.004
|
[36] |
H. M. Feng, " Self-generation RBFNs using evolutional PSO learning,” Neurocomputing, vol. 70, no. 1–3, pp. 241–251, Dec. 2006. doi: 10.1016/j.neucom.2006.03.007
|
[37] |
F. Li, C. L. Yang, and J. F. Qiao, " A novel RBF neural network design based on immune algorithm system”, in Proc. 36th Chinese Control Conf. (CCC), pp. 4598-4603, Jul. 2017.
|