IEEE/CAA Journal of Automatica Sinica
Citation: | Abhinoy Kumar Singh, "Fractionally Delayed Kalman Filter," IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 169-177, Jan. 2020. doi: 10.1109/JAS.2019.1911840 |
[1] |
R. E. Kalman, " A new approach to linear filtering and prediction problems,” Jr. Basic Eng., vol. 82, no. 1, pp. 35–45, 1960. doi: 10.1115/1.3662552
|
[2] |
B. D. O. Anderson and J. B. Moore, Optimal Filtering. New York: Dover, 2005.
|
[3] |
Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation With Application to Tracking and Navigation. New York: John Wiley and Sons, 2001.
|
[4] |
D. L. Mills, " Internet Time Synchronization: the network time protocol,” IEEE Trans. Comm., vol. 39, no. 10, pp. 1482–1493, Oct. 1991. doi: 10.1109/26.103043
|
[5] |
U. K. Singh, R. Mitra, V. Bhatia, and A. K. Mishra, " Kernel LMS based estimation techniques for radar systems, ” IEEE Trans. Aero. Elect. Syst., in press, DOI: 10.1109/TAES.2019.2891148.
|
[6] |
A. K. Singh, P. Date, and S. Bhaumik, " A modified Bayesian filter for randomly delayed measurements,” IEEE Trans. Auto. Cont., vol. 62, no. 1, pp. 419–424, Jan. 2017. doi: 10.1109/TAC.2016.2531418
|
[7] |
A. H. Carazo and J. L. Perez, " Extended and unscented filtering algorithms using one-step randomly delayed observations,” Appl. Maths. Comp., vol. 190, no. 2, pp. 1375–1393, July. 2007. doi: 10.1016/j.amc.2007.02.016
|
[8] |
Y. Bar-Shalom, " Update with out-of-sequence measurements in tracking: exact solution,” IEEE Trans. Aero. Elect. Sys., vol. 38, no. 3, pp. 769–777, Jul. 2002. doi: 10.1109/TAES.2002.1039398
|
[9] |
S. Challa, R. J. Evans, and X. Wang, " A Bayesian solution and its approximations to out-of-sequence measurement problems,” Infor. Fusion, vol. 4, no. 3, pp. 185–199, Sep. 2003. doi: 10.1016/S1566-2535(03)00037-X
|
[10] |
S. C. A. Thomopoulos, " Decentralized filtering with random sampling and delay,” Infor. Scien., vol. 81, no. 1–2, pp. 117–131, Nov. 1994. doi: 10.1016/0020-0255(94)90093-0
|
[11] |
S. T. Pan and F. H. Hsiao, " Robust Kalman filter synthesis for uncertain multiple time-delay stochastic systems,” J. Dyn. Sys. Meas. Control, vol. 118, no. 4, pp. 803–808, Dec. 1996. doi: 10.1115/1.2802363
|
[12] |
T. D. Larsen, N. A. Andersen, O. Ravn, et al., " Incorporation of time delayed measurements in a discrete-time Kalman filter, ” in Proc. IEEE Conf. Decis. Control, Tampa, 1998, pp. 16–18.
|
[13] |
J. Nilsson, B. Bernhardsson, and B. Wittenmark, " Stochastic analysis and control of real-time systems with random time delays,” Automatica, vol. 34, no. 1, pp. 57–64, Jan. 2002.
|
[14] |
I. V. Kolmanovskya and T. L. Maizenbergb, " Optimal control of continuous-time linear systems with a time-varying, random delay,” Automatica, vol. 44, no. 2, pp. 119–126, Oct. 2001.
|
[15] |
K. W. Lo, B. G. Ferguson, Y. J. Gao, and A. Maguer, " Aircraft flight parameter estimation using acoustic multipath delays,” IEEE Trans. Aero. Elect. Syst., vol. 39, no. 1, pp. 259–268, Jan. 2003. doi: 10.1109/TAES.2003.1188908
|
[16] |
X. Song, Z. Duan and J. H. Park, " Linear optimal estimation for discretetime systems with measurement-delay and packet dropping,” Appl. Math. Comp., vol. 284, pp. 115–124, July. 2016. doi: 10.1016/j.amc.2016.02.046
|
[17] |
Z. Tang, J. H. Park, and T. H. Lee, " Dynamic output-feedback-based H design for networked control systems with multipath packet dropouts,” Appl. Math. Comp., vol. Feb, pp. 121–133, Mar. 2016.
|
[18] |
A. Ray, L. W. Liou, and J. H. Shen, " State estimation using randomly delayed measurements,” J. Dyn. Sys. Meas. Control, vol. 115, no. 1, pp. 19–26, Mar. 1993. doi: 10.1115/1.2897399
|
[19] |
E. Yaz and A. Ray, " Grammian assignment for stochastic-parameter systems and their stabilization under randomly varying delays, ” in Proc. IEEE Conf. Decis. Control, USA, 1994, pp. 2176–2181.
|
[20] |
E. Yaz and A. Ray, " Linear unbiased state estimation under randomly varying bounded sensor delay,” Appl. Math. Lett., vol. 11, no. 4, pp. 27–32, 1998. doi: 10.1016/S0893-9659(98)00051-2
|
[21] |
X. Lu, H. Zhang, W. Wang, et al, " Kalman filtering for multiple timedelay systems,” Automatica, vol. 41, no. 8, pp. 1455–1461, Aug. 2005. doi: 10.1016/j.automatica.2005.03.018
|
[22] |
X. Lu, L. Xie, H. Zhang, and W. Wang, " Robust Kalman filtering for discrete-time systems with measurement delay,” IEEE Trans. Circ. Sys. II:Exp. Brief, vol. 54, no. 6, pp. 522–526, June. 2007.
|
[23] |
M. Moayedi, Y. K. Foo and Y. C. Soh, " Adaptive Kalman filtering in networked systems with random sensor delays, multiple packet dropouts and missing measurements,” IEEE Trans. Sign. Process., vol. 58, no. 3, pp. 1577–1588, Dec. 2009.
|
[24] |
X. Lu, L. Xie, H. Zhang, and W. Wang, " Robust Kalman filtering for uncertain state delay systems with random observation delays and missing measurements,” IET Control Theo. Appl., vol. 5, no. 17, pp. 1945–1954, Oct. 2011. doi: 10.1049/iet-cta.2010.0685
|
[25] |
S. Sun, " Optimal linear filters for discrete-time systems with randomly delayed and lost measurements with/without time stamps,” IEEE Trans. Auto. Control, vol. 58, no. 6, pp. 1551–1556, Nov. 2012.
|
[26] |
X. Lu, L. Wang, and H. Wang, " Kalman filtering for delayed singular systems with multiplicative noise,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 1, pp. 51–58, Jan. 2016. doi: 10.1109/JAS.2016.7373762
|
[27] |
W. Zimmerman, " On the optimum colored noise Kalman filter,” IEEE Trans. Autom. Cont., vol. 14, no. 2, pp. 194–196, Apr. 1969. doi: 10.1109/TAC.1969.1099149
|
[28] |
W. R. Wu and A. Kundu, " Recursive filtering with non-Gaussian noises,” IEEE Trans. Sign. Proc., vol. 44, no. 6, pp. 1454–1468, Jun. 1996. doi: 10.1109/78.506611
|
[29] |
A. E. Cetin and A. M. Tekalp, " Robust reduced update Kalman filtering,” IEEE Trans. Circ. Syst., vol. 37, no. 1, pp. 155–156, Jan. 1990. doi: 10.1109/31.45708
|
[30] |
D. Liang, " On continuous-time estimation for linear delayed-systems with correlated state and observation noises,” IEEE Trans. Autom. Cont., vol. 22, no. 3, pp. 472–474, Jun. 1977. doi: 10.1109/TAC.1977.1101517
|
[31] |
A. H. Jazwinski, Stochastic Processes and Filtering Theory, New York, 1970.
|
[32] |
S. Sarkka, " On unscented Kalman filtering for state estimation of continuous-time nonlinear systems,” IEEE Trans. Autom. Cont., vol. 59, no. 9, pp. 1631–1641, Sep. 2007.
|
[33] |
X. Wang, Y. Liang, Q. Pan, et al, " Gaussian filter for nonlinear systems with one-step randomly delayed measurements,” Automatica, vol. 49, no. 4, pp. 976–986, April. 2013. doi: 10.1016/j.automatica.2013.01.012
|