A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 1
Jan.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Dianwei Qian, Hui Ding, SukGyu Lee and Hyansu Bae, "Suppression of Chaotic Behaviors in a Complex Biological System by Disturbance Observer-based Derivative-Integral Terminal Sliding Mode," IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 126-135, Jan. 2020. doi: 10.1109/JAS.2019.1911834
Citation: Dianwei Qian, Hui Ding, SukGyu Lee and Hyansu Bae, "Suppression of Chaotic Behaviors in a Complex Biological System by Disturbance Observer-based Derivative-Integral Terminal Sliding Mode," IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 126-135, Jan. 2020. doi: 10.1109/JAS.2019.1911834

Suppression of Chaotic Behaviors in a Complex Biological System by Disturbance Observer-based Derivative-Integral Terminal Sliding Mode

doi: 10.1109/JAS.2019.1911834
Funds:  This work was supported by the Fundamental Research Funds for the Central Universities (2018MS29)
More Information
  • Coronary artery systems are a kind of complex biological systems. Their chaotic phenomena can lead to serious health problems and illness development. From the perspective of engineering, this paper investigates the chaos suppression problem. At first, nonlinear dynamics of coronary artery systems are presented. To suppress the chaotic phenomena, the method of derivative-integral terminal sliding mode control is adopted. Since coronary artery systems suffer from uncertainties, the technique of disturbance observer is taken into consideration. The stability of such a control system that integrates the derivative-integral terminal sliding mode controller and the disturbance observer is proven in the sense of Lyapunov. To verify the feasibility and effectiveness of the proposed strategy, simulation results are illustrated in comparison with a benchmark.

     

  • loading
  • [1]
    G. K. Hansson, " Mechanisms of disease-Inflammation, atherosclerosis, and coronary artery disease,” N. Engl. J. Med., vol. 352, no. 16, pp. 1685–1695, 2005. doi: 10.1056/NEJMra043430
    [2]
    K. Ozaki and T. Tanaka, " Molecular genetics of coronary artery disease,” J. Hum. Genet., vol. 61, no. 1, pp. 71–77, 2016. doi: 10.1038/jhg.2015.70
    [3]
    G. W. He and D. P. Taggart, " Spasm in arterial grafts in coronary artery bypass grafting surgery,” Ann. Thorac. Surg., vol. 101, no. 3, pp. 1222–1229, 2016. doi: 10.1016/j.athoracsur.2015.09.071
    [4]
    X. L. Liu, F Hou, H Qin, and A. M. Hao, " Robust optimization-based coronary artery labeling from X-ray angiograms,” IEEE J. Biomed. Health Inform., vol. 20, no. 6, pp. 1608–1620, 2016. doi: 10.1109/JBHI.2015.2485227
    [5]
    A. Hernandez-Vela, C. Gatta, S. Escalera, L. Igual, V. Martin-Yuste, M. Sabate, and P. Radeva, " Accurate coronary centerline extraction, caliber estimation, and catheter detection in angiographies,” IEEE T. Inf. Technol. Biomed., vol. 16, no. 6, pp. 1332–1340, 2012. doi: 10.1109/TITB.2012.2220781
    [6]
    Z. Qian, I. Marvasty, S. Rinehart, and S. Voros, " A Lesion-specific coronary artery calcium quantification framework for the prediction of cardiac events,” IEEE T. Inf. Technol. Biomed., vol. 15, no. 5, pp. 673–680, 2011. doi: 10.1109/TITB.2011.2162074
    [7]
    C. C. Wang and H. T. Yauuu, " Chaos analysis and synchronization control of coronary artery systems,” Abstract Appl. Anal., pp. 209718, 2013. doi: 10.1155/2013/209718,2013
    [8]
    T. Schauer, N. O. Negard, F. Previdi, K. J. Hunt, and M. H. Fraser, " Ferchland E and Raisch J online identification and nonlinear control of the electrically stimulated quadriceps muscle,” Control Eng. Practice, vol. 13, no. 9, pp. 1207–1219, 2005. doi: 10.1016/j.conengprac.2004.10.006
    [9]
    W. L. Li, " Tracking control of chaotic coronary artery system,” Int. J. Syst. Sci., vol. 43, no. 1, pp. 21–30, 2012. doi: 10.1080/00207721003764125
    [10]
    L. M. Pecora and T. L. Carroll, " Synchronization in chaotic systems,” Phys. Rev. Lett., vol. 64, no. 8, pp. 821–824, 1990. doi: 10.1103/PhysRevLett.64.821
    [11]
    M. Rafikov and J. M. Balthazar, " On control and synchronization in chaotic and hyperchaotic systems via linear feedback control,” Commun. Nonlinear Sci. Numer. Simul., vol. 13, no. 7, pp. 1246–1255, 2008. doi: 10.1016/j.cnsns.2006.12.011
    [12]
    Y. G. Yu, H. X. Li, and J. Duan, " Chaos synchronization of a unified chaotic system via partial linearization,” Chaos Solitons Fractals, vol. 41, no. 1, pp. 457–463, 2009. doi: 10.1016/j.chaos.2008.02.010
    [13]
    D. Ghosh and A. R. Chowdhury, " Nonlinear observer-based impulsive synchronization in chaotic systems with multiple attractors,” Nonlinear Dyn., vol. 60, no. 4, pp. 607–613, 2010. doi: 10.1007/s11071-009-9618-5
    [14]
    A. Chithra and I. R. Mohamed, " Synchronization and chaotic communication in nonlinear circuits with nonlinear coupling,” J. Comput. Electron., vol. 16, no. 3, pp. 833–844, 2017. doi: 10.1007/s10825-017-1013-8
    [15]
    C. Gong, Y. Li, and X. Sun, " Backstepping control of synchronization for biomathematical model of muscular blood vessel,” J. Appl. Sci., vol. 24, no. 6, pp. 604–607, 2006.
    [16]
    W. S. Wu, Z. S. Zhao, J. Zhang, and L. K. Sun, " State feedback synchronization control of coronary artery chaos system with interval timevarying delay,” Nonlinear Dyn., vol. 87, no. 3, pp. 1773–1783, 2017. doi: 10.1007/s11071-016-3151-0
    [17]
    D. W. Qian, C. D. Li, S. G. Lee, and C. Ma, " Robust formation maneuvers through sliding mode for multi-agent systems with uncertainties,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 342–351, 2018.
    [18]
    C. J. Lin, S. K. Yang, and H.T. Yau, " Chaos suppression control of a coronary artery system with uncertainties by using variable structure control,” Comput. Math. Appl., vol. 64, no. 5, pp. 988–995, 2012. doi: 10.1016/j.camwa.2012.03.007
    [19]
    Z. S. Zhao, J. Zhang, G. Ding, and D. K. Zhang, " Chaos synchronization of coronary artery system based on higher order sliding mode adaptive control,” Acta Phys. Sin., vol. 64, no. 21, 2015. doi: 10.7498/aps.64.210508,2015
    [20]
    Z. S. Zhao, X. M. Li, J. Zhang, and Y. Z. Pei, " Terminal sliding mode control with self-tuning for coronary artery system synchronization,” Int. J. Biomath., vol. 10, no. 3, 2017. doi: 10.1142/S1793524517500413,2017
    [21]
    A. M. Zou, K. D. Kumar, Z. G. Hou, and X. Liu, " Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network,” IEEE Trans. Syst. Man Cybern,Part B-Cybern., vol. 41, no. 4, pp. 950–963, 2011. doi: 10.1109/TSMCB.2010.2101592
    [22]
    C. S. Chiu and C. T. Shen, " Finite-time control of DC-DC buck converters via integral terminal sliding modes,” Int. J. Electron., vol. 99, no. 5, pp. 643–655, 2012. doi: 10.1080/00207217.2011.643493
    [23]
    C. S. Chiu, " Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems,” Automatica, vol. 48, no. 2, pp. 316–326, 2012. doi: 10.1016/j.automatica.2011.08.055
    [24]
    M. Chen and S. Z. Ge, " Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer,” IEEE T. Cybern., vol. 43, no. 4, pp. 1213–1225, 2013. doi: 10.1109/TSMCB.2012.2226577
    [25]
    T. Poloni, I. Kolmanovsky, and B. Rohal’-Ilkiv, " Simple input disturbance observer-based control: case atudies,” J. Dyn. Syst. Meas. Control Trans. ASME, vol. 140, no. 1, 2018. doi: 10.1115/1.4037298,2018

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (1342) PDF downloads(76) Cited by()

    Highlights

    • This paper investigates the chaos suppression problem of a biological coronary artery system.
    • A scheme integrates the sliding mode controller and the disturbance observer.
    • The system stability is presented in the sense of Lyapunov.
    • Results are illustrated to support the scheme in comparison with a benchmark.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return