IEEE/CAA Journal of Automatica Sinica
Citation: | Parham M. Kebria, Abbas Khosravi, Syed Moshfeq Salaken and Saeid Nahavandi, "Deep Imitation Learning for Autonomous Vehicles Based on Convolutional Neural Networks," IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 82-95, Jan. 2020. doi: 10.1109/JAS.2019.1911825 |
[1] |
Y. LeCun, Y. Bengio, and G. Hinton, " Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015. doi: 10.1038/nature14539
|
[2] |
M. Wainberg, D. Merico, A. Delong, and B. J. Frey, " Deep learning in biomedicine,” Nat. Biotechnol., vol. 36, no. 9, pp. 829–838, Oct. 2018. doi: 10.1038/nbt.4233
|
[3] |
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, " OverFeat: integrated recognition, localization and detection using convolutional networks,” arXiv preprint arXiv: 1312.6229, Dec. 2013.
|
[4] |
K. Simonyan and A. Zisserman, " Two-stream convolutional networks for action recognition in videos,” in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014, pp. 568–576.
|
[5] |
K. Simonyan and A. Zisserman, " Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv: 1409.1556, Sept. 2014.
|
[6] |
M. D. Zeiler and R. Fergus, " Visualizing and understanding convolutional networks,” in Proc. 13th European Conf. Computer Vision, Zurich, Switzerland, 2014, pp. 818–833.
|
[7] |
A. Krizhevsky, I. Sutskever, and G. E. Hinton, " ImageNet classification with deep convolutional neural networks,” in Proc. 25th Int. Conf. Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012, pp. 1097–1105.
|
[8] |
L. Chen, X. M. Hu, T. Xu, H. L. Kuang, and Q. Q. Li, " Turn signal detection during nighttime by CNN detector and perceptual hashing tracking,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 12, pp. 3303–3314, Dec. 2017. doi: 10.1109/TITS.2017.2683641
|
[9] |
Q. Wang, J. Y. Gao, and Y. Yuan, " Embedding structured contour and location prior in siamesed fully convolutional networks for road detection,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 230–241, Jan. 2018. doi: 10.1109/TITS.2017.2749964
|
[10] |
S. P. Zhang, Y. K. Qi, F. Jiang, X. Y. Lan, P. C. Yuen, and H. Y. Zhou, " Point-to-set distance metric learning on deep representations for visual tracking,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 187–198, Jan. 2018. doi: 10.1109/TITS.2017.2766093
|
[11] |
P. M. Kebria, A. Khosravi, S. Nahavandi, Z. Najdovski, and S. J. Hilton, " Neural network adaptive control of teleoperation systems with uncertainties and time-varying delay,” in Proc. 2018 IEEE 14th Int. Conf. Automation Science and Engineering, Munich, Germany, 2018, pp. 252–257.
|
[12] |
P. M. Kebria, A. Khosravi, S. Nahavandi, D. R. Wu, and F. Bello, " Adaptive type-2 fuzzy neural-network control for teleoperation systems with delay and uncertainties,” IEEE Trans. Fuzzy Syst.
|
[13] |
M. Kuderer, S. Gulati, and W. Burgard, " Learning driving styles for autonomous vehicles from demonstration,” in Proc. 2015 IEEE Int. Conf. Robotics and Automation, Seattle, WA, USA, 2015, pp. 2641–2646.
|
[14] |
S. X. Gu, E. Holly, T. Lillicrap, and S. Levine, " Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates,” in Proc. 2017 IEEE Int. Conf. Robotics and Automation, Singapore, 2017, pp. 3389–3396.
|
[15] |
B. D. Argall, S. Chernova, M. Veloso, and B. Browning, " A survey of robot learning from demonstration,” Rob. Auton. Syst., vol. 57, no. 5, pp. 469–483, May 2009. doi: 10.1016/j.robot.2008.10.024
|
[16] |
A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, " Imitation learning: a survey of learning methods,” ACM Comput. Surv., vol. 50, no. 2, pp. 21, Jun. 2017.
|
[17] |
D. Silver, J. A. Bagnell, and A. Stentz, " Applied imitation learning for autonomous navigation in complex natural terrain,” in Field and Service Robotics, A. Howard, K. Iagnemma, and A. Kelly, Eds. Berlin, Heidelberg, Germany: Springer, 2010, pp. 249–259.
|
[18] |
A. Martínez-Tenor, J. A. Fernández-Madrigal, A. Cruz-Martín, and J. González-Jiménez, " Towards a common implementation of reinforcement learning for multiple robotic tasks,” Expert Syst. Appl., vol. 100, pp. 246–259, Jun. 2018. doi: 10.1016/j.eswa.2017.11.011
|
[19] |
K. Menda, Y. C. Chen, J. Grana, J. W. Bono, B. D. Tracey, M. J. Kochenderfer, and D. Wolpert, " Deep reinforcement learning for event-driven multi-agent decision processes,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 4, pp. 1259–1268, Apr. 2019. doi: 10.1109/TITS.2018.2848264
|
[20] |
B. Ghazanfari and N. Mozayani, " Extracting bottlenecks for reinforcement learning agent by holonic concept clustering and attentional functions,” Expert Syst. Appl., vol. 54, pp. 61–77, Jul. 2016. doi: 10.1016/j.eswa.2016.01.030
|
[21] |
J. Courbon, Y. Mezouar, and P. Martinet, " Autonomous navigation of vehicles from a visual memory using a generic camera model,” IEEE Trans. Intell. Transp. Syst., vol. 10, no. 3, pp. 392–402, Sep. 2009. doi: 10.1109/TITS.2008.2012375
|
[22] |
T. H. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel, " Deep imitation learning for complex manipulation tasks from virtual reality teleoperation,” in Proc. 2018 IEEE Int. Conf. Robotics and Automation, Brisbane, QLD, Australia, 2018, pp. 5628–5635.
|
[23] |
W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell, " Deeply AggreVaTed: Differentiable imitation learning for sequential prediction,” in Proc. 34th Int. Conf. Machine Learning, Sydney, Australia, 2017, pp. 3309–3318.
|
[24] |
B. K. Chen, C. Gong, and J. Yang, " Importance-aware semantic segmentation for autonomous vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 1, pp. 137–148, Jan. 2019. doi: 10.1109/TITS.2018.2801309
|
[25] |
W. Sun, J. A. Bagnell, and B. Boots, " Truncated horizon policy search: Combining reinforcement learning & imitation learning,” in Proc. ICLR 2018 Conf. Acceptance Decision, Vancouver, BC, Canada, 2018.
|
[26] |
J. Merel, Y. Tassa, T. B. Dhruva, S. Srinivasan, J. Lemmon, Z. Y. Wang, G. Wayne, and N. Heess, " Learning human behaviors from motion capture by adversarial imitation,” arXiv preprint arXiv: 1707.02201, Jul. 2017.
|
[27] |
T. Liu, B. Tian, Y. F. Ai, L. Li, D. P. Cao, and F. Y. Wang, " Parallel reinforcement learning: a framework and case study,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 827–835, Jul. 2018. doi: 10.1109/JAS.2018.7511144
|
[28] |
L. Cardamone, D. Loiacono, and P. L. Lanzi, " Learning drivers for torcs through imitation using supervised methods,” Proc. 2009 IEEE Symp. Computational Intelligence and Games Milano,Italy, pp. 148–155, 2009.
|
[29] |
J. Ho and S. Ermon, " Generative adversarial imitation learning,” in Proc. 30th Conf. Neural Information Processing Systems, Barcelona, Spain, 2016, pp. 4565–4573.
|
[30] |
Y. Duan, M. Andrychowicz, B. Stadie, O. J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and W. Zaremba, " One-shot imitation learning,” in Proc. 31th Conf. Neural Information Processing Systems, Long Beach, CA, USA, 2017, pp. 1087–1098.
|
[31] |
B. C. Stadie, P. Abbeel, and I. Sutskever, " Third-person imitation learning,” arXiv preprint arXiv: 1703.01703, Mar. 2017.
|
[32] |
J. Saunders, C. L. Nehaniv, and K. Dautenhahn, " Teaching robots by moulding behavior and scaffolding the environment,” in Proc. 1st ACM SIGCHI/SIGART Conf. Human-robot Interaction, Salt Lake City, Utah, USA, 2006, pp. 118–125.
|
[33] |
S. Nahavandi, " Trusted autonomy between humans and robots: toward human-on-the-loop in robotics and autonomous systems,” IEEE Syst.,Man,Cybern. Mag., vol. 3, no. 1, pp. 10–17, Jan. 2017. doi: 10.1109/MSMC.2016.2623867
|
[34] |
D. Gandhi, L. Pinto, and A. Gupta, " Learning to fly by crashing,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vancouver, BC, Canada, 2017, pp. 3948–3955.
|
[35] |
M. Mueller, V. Casser, N. Smith, and B. Ghanem, " Teaching UAVs to race using UE4Sim,” arXiv preprint arXiv: 1708.05884, Aug. 2017.
|
[36] |
C. Innocenti, H. Lindén, G. Panahandeh, L. Svensson, and N. Mohammadiha, " Imitation learning for vision-based lane keeping assistance,” in Proc. 20th Int. IEEE Conf. Intelligent Transportation Systems, Yokohama, Japan, 2017, pp. 3948–3955.
|
[37] |
S. Priesterjahn, O. Kramer, A. Weimer, and A. Goebels, " Evolution of reactive rules in multi player computer games based on imitation,” in Proc. 1st Int. Conf. Natural Computation, Changsha, China, 2005, pp. 744–755.
|
[38] |
P. M. Kebria, A. Khosravi, S. M. Salaken, I. Hossain, H. M. D. Kabir, A. Koohestani, R. Alizadehsani, and S. Nahavandi, " Deep imitation learning: the impact of depth on policy performance,” in Proc. 25th Int. Conf. Neural Information Processing, Siem Reap, Cambodia, 2018, pp. 172–181.
|
[39] |
A. Diosi, S. Segvic, A. Remazeilles, and F. Chaumette, " Experimental evaluation of autonomous driving based on visual memory and image-based visual servoing,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 3, pp. 870–883, Sep. 2011. doi: 10.1109/TITS.2011.2122334
|
[40] |
H. B. Gao, B. Cheng, J. Q. Wang, K. Q. Li, J. H. Zhao, and D. Y. Li, " Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment,” IEEE Trans. Ind. Inform., vol. 14, no. 9, pp. 4224–4231, Sep. 2018. doi: 10.1109/TII.2018.2822828
|
[41] |
P. M. Kebria, R. Alizadehsani, S. M. Salaken, I. Hossain, A. Khosravi, D. Kabir, A. Koohestani, H. Asadi, S. Nahavandi, E. Tunsel, and M. Saif, " Evaluating architecture impacts on deep imitation learning performance for autonomous driving,” in Proc. IEEE Int. Conf. Industrial Technology, Melbourne, Australia, 2019, pp. 865–870.
|
[42] |
J. H. Kim, G. Batchuluun, and K. R. Park, " Pedestrian detection based on faster R-CNN in nighttime by fusing deep convolutional features of successive images,” Expert Syst. Appl., vol. 114, pp. 15–33, Dec. 2018. doi: 10.1016/j.eswa.2018.07.020
|
[43] |
Y. W. Seo, J. Lee, W. D. Zhang, and D. Wettergreen, " Recognition of highway workzones for reliable autonomous driving,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 708–718, Apr. 2015.
|
[44] |
A. Dominguez-Sanchez, M. Cazorla, and S. Orts-Escolano, " Pedestrian movement direction recognition using convolutional neural networks,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 12, pp. 3540–3548, Dec. 2017. doi: 10.1109/TITS.2017.2726140
|
[45] |
S. Di, H. G. Zhang, C. G. Li, X. Mei, D. Prokhorov, and H. B. Ling, " Cross-domain traffic scene understanding: a dense correspondence-based transfer learning approach,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 3, pp. 745–757, Mar. 2018. doi: 10.1109/TITS.2017.2702012
|
[46] |
Y. J. Zeng, X. Xu, D. Y. Shen, Y. Q. Fang, and Z. P. Xiao, " Traffic sign recognition using kernel extreme learning machines with deep perceptual features,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 6, pp. 1647–1653, Jun. 2017.
|
[47] |
Q. Wang, J. Y. Gao, and Y. Yuan, " A joint convolutional neural networks and context transfer for street scenes labeling,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 5, pp. 1457–1470, May 2018. doi: 10.1109/TITS.2017.2726546
|
[48] |
J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, " How transferable are features in deep neural networks?,” in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014, 3320–3328.
|
[49] |
Z. H. Zhou, J. X. Wu, and W. Tang, " Ensembling neural networks: many could be better than all,” Artif. Intell., vol. 137, no. 1-2, pp. 239–263, May 2002. doi: 10.1016/S0004-3702(02)00190-X
|
[50] |
L. Breiman, " Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, Aug. 1996.
|
[51] |
T. G. Dietterich, " An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization,” Mach. Learn., vol. 40, no. 2, pp. 139–157, Aug. 2000. doi: 10.1023/A:1007607513941
|
[52] |
C. Strobl, J. Malley, and G. Tutz, " An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging, and random forests,” Psychol. Methods, vol. 14, no. 4, pp. 323–348, Dec. 2009. doi: 10.1037/a0016973
|
[53] |
J. Mendes-Moreira, C. Soares, A. M. Jorge, and J. F. De Sousa, " Ensemble approaches for regression: a survey,” ACM Comput. Surv., vol. 14, no. 1, pp. 10, Nov. 2012.
|
[54] |
Udacity. Self-drivign-car. (2018) [Online]. Available: https://www.udacity.com/
|
[55] |
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, " Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015. doi: 10.1038/nature14236
|
[56] |
T. Mareda, L. Gaudard, and F. Romerio, " A parametric genetic algorithm approach to assess complementary options of large scale windsolar coupling,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 260–272, Apr. 2017. doi: 10.1109/JAS.2017.7510523
|
[57] |
Q. Kang, X. Y. Song, M. C. Zhou, and L. Li, " A collaborative resource allocation strategy for decomposition-based multiobjective evolutionary algorithms,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 49, no. 12, pp. 2416–2423, Dec. 2019.
|