IEEE/CAA Journal of Automatica Sinica
Citation: | Minghao Han, Ruixian Zhang, Lixian Zhang, Ye Zhao and Wei Pan, "Asynchronous Observer Design for Switched Linear Systems: A Tube-Based Approach," IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 70-81, Jan. 2020. doi: 10.1109/JAS.2019.1911822 |
[1] |
L. Ni and D. W. Wang, " A gain-switching control scheme for positionerror-based bilateral teleoperation: Contact stability analysis and controller design,” The Int. J. Robotics Research, vol. 23, no. 3, pp. 255–274, 2004. doi: 10.1177/0278364904041563
|
[2] |
K. S. Narendra, J. Balakrishnan, and M. K. Ciliz, " Adaptation and learning using multiple models, switching, and tuning,” IEEE Control Systems, vol. 15, no. 3, pp. 37–51, 1995. doi: 10.1109/37.387616
|
[3] |
Y. Kang, D. H. Zhai, G. P. Liu, Y. B. Zhao, and P. Zhao, " Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching,” IEEE Trans. Automatic Control, vol. 59, no. 6, pp. 1511–1523, 2014. doi: 10.1109/TAC.2014.2305931
|
[4] |
X. Zhao, L. Zhang, P. Shi, and M. Liu, " Stability and stabilization of switched linear systems with mode-dependent average dwell time,” IEEE Trans. Automatic Control, vol. 57, no. 7, pp. 1809–1815, 2012. doi: 10.1109/TAC.2011.2178629
|
[5] |
Y. Kang, D. H. Zhai, G. P. Liu, and Y. B. Zhao, " On input-to-state stability of switched stochastic nonlinear systems under extended asynchronous switching,” IEEE Trans. Cybernetics, vol. 46, no. 5, pp. 1092–1105, 2016. doi: 10.1109/TCYB.2015.2423553
|
[6] |
S. Yuan, L. Zhang, B. De Schutter, and S. Baldi, " A novel Lyapunov function for a non-weighted L2 gain of asynchronously switched linear systems,” Automatica, vol. 87, pp. 310–317, 2018. doi: 10.1016/j.automatica.2017.10.018
|
[7] |
D. Ma and J. Zhao, " Stabilization of networked switched linear systems: an asynchronous switching delay system approach,” Systems and Control Letters, vol. 77, pp. 46–54, 2015.
|
[8] |
J. Lin, S. Fei, and Z. Gao, " Stabilization of discrete-time switched singular time-delay systems under asynchronous switching,” J. the Franklin Institute, vol. 349, no. 5, pp. 1808–1827, 2012. doi: 10.1016/j.jfranklin.2012.02.009
|
[9] |
Y. E. Wang, J. Zhao, and B. Jiang, " Stabilization of a class of switched linear neutral systems under asynchronous switching,” IEEE Trans. Automatic Control, vol. 58, no. 8, pp. 2114–2119, 2013. doi: 10.1109/TAC.2013.2250076
|
[10] |
Z. Xiang, R. Wang, and Q. Chen, " Robust reliable stabilization of stochastic switched nonlinear systems under asynchronous switching,” Applied Mathematics and Computation, vol. 217, no. 19, pp. 7725–7736, 2011. doi: 10.1016/j.amc.2011.02.076
|
[11] |
G. Zong, R. Wang, W. X. Zheng, and L. Hou, " Finite-time stabilization for a class of switched time-delay systems under asynchronous switching,” Applied Mathematics and Computation, vol. 219, no. 11, pp. 5757–5771, 2013. doi: 10.1016/j.amc.2012.11.078
|
[12] |
H. Liu, Y. Shen, and X. Zhao, " Delay-dependent observer-based H∞ finite-time control for switched systems with time-varying delay,” Nonlinear Analysis:Hybrid Systems, vol. 6, no. 3, pp. 885–898, 2012. doi: 10.1016/j.nahs.2012.03.001
|
[13] |
J. Lian and Y. Ge, " Robust H∞ output tracking control for switched systems under asynchronous switching,” Nonlinear Analysis:Hybrid Systems, vol. 8, pp. 57–68, 2013. doi: 10.1016/j.nahs.2012.10.003
|
[14] |
H. Liu, Y. Shen, and X. Zhao, " Asynchronous finite-time H∞ control for switched linear systems via mode-dependent dynamic state-feedback,” Nonlinear Analysis:Hybrid Systems, vol. 8, pp. 109–120, 2013. doi: 10.1016/j.nahs.2012.12.001
|
[15] |
D. Zhang, L. Yu, Q. G. Wang, and C. J. Ong, " Estimator design for discrete-time switched neural networks with asynchronous switching and time-varying delay,” IEEE Trans. Neural Networks and Learning Systems, vol. 23, no. 5, pp. 827–834, 2012. doi: 10.1109/TNNLS.2012.2186824
|
[16] |
B. Niu and J. Zhao, " Robust h control for a class of switched nonlinear cascade systems via multiple lyapunov functions approach,” Applied Mathematics and Computation, vol. 218, no. 11, pp. 6330–6339, 2012. doi: 10.1016/j.amc.2011.09.059
|
[17] |
L. Zhang, S. Zhuang, and P. Shi, " Non-weighted quasi-time-dependent H∞ filtering for switched linear systems with persistent dwell-time,” Automatica, vol. 54, pp. 201–209, 2015. doi: 10.1016/j.automatica.2015.02.010
|
[18] |
N. Vafamand, M. H. Asemani, and A. Khayatian, " Robust L1 observerbased non-PDC controller design for persistent bounded disturbed TS fuzzy systems,” IEEE Trans. Fuzzy Systems, 2017.
|
[19] |
J. H. Kim, S. M. Hur, and Y. Oh, " Performance analysis for bounded persistent disturbances in PD/PID-controlled robotic systems with its experimental demonstrations,” Int. J. Control, vol. 91, no. 3, pp. 688–705, 2018. doi: 10.1080/00207179.2017.1288301
|
[20] |
Y. Li, Q. Zhang, X. Zhou, and X. Luo, " Basis-dependent and delaydependent results on robust L1 filtering for networked control systems,” J. the Franklin Institute, vol. 353, no. 14, pp. 3368–3385, 2016. doi: 10.1016/j.jfranklin.2016.06.005
|
[21] |
L. Zhang, S. Zhuang, P. Shi, and Y. Zhu, " Uniform tube based stabilization of switched linear systems with mode-dependent persistent dwell-time,” IEEE Trans. Automatic Control, vol. 60, no. 11, pp. 2994–2999, 2015. doi: 10.1109/TAC.2015.2414813
|
[22] |
L. Zhang, S. Zhuang, and R. D. Braatz, " Switched model predictive control of switched linear systems: feasibility, stability and robustness,” Automatica, vol. 67, pp. 8–21, 2016. doi: 10.1016/j.automatica.2016.01.010
|
[23] |
M. Dehghan and C. J. Ong, " Characterization and computation of disturbance invariant sets for constrained switched linear systems with dwell time restriction,” Automatica, vol. 48, no. 9, pp. 2175–2181, 2012. doi: 10.1016/j.automatica.2012.06.007
|
[24] |
Y. Ren, M. J. Er, and G. Sun, " Switched systems with average dwell time: Computation of the robust positive invariant set,” Automatica, vol. 85, pp. 306–313, 2017. doi: 10.1016/j.automatica.2017.07.066
|
[25] |
C.-K. Lin, " H∞ reinforcement learning control of robot manipulators using fuzzy wavelet networks,” Fuzzy Sets and Systems, vol. 160, no. 12, pp. 1765–1786, 2009. doi: 10.1016/j.fss.2008.09.010
|
[26] |
D. Q. Mayne, M. M. Seron, and S. Raković, " Robust model predictive control of constrained linear systems with bounded disturbances,” Automatica, vol. 41, no. 2, pp. 219–224, 2005. doi: 10.1016/j.automatica.2004.08.019
|
[27] |
F. Blanchini, D. Casagrande, and S. Miani, " Modal and transition dwell time computation in switching systems: a set-theoretic approach,” Automatica, vol. 46, no. 9, pp. 1477–1482, 2010. doi: 10.1016/j.automatica.2010.06.006
|
[28] |
L. Zhang, N. Cui, M. Liu, and Y. Zhao, " Asynchronous filtering of discrete-time switched linear systems with average dwell time,” IEEE Trans. Circuits and Systems, vol. 58, no. 5, pp. 1109–1118, 2011. doi: 10.1109/TCSI.2010.2092151
|
[29] |
J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design. Nob Hill Pub., 2009.
|
[30] |
D. Liberzon, Switching in Systems and Control. Springer Science and Business Media, 2012.
|
[31] |
S. Kanev and M. Verhaegen, " Controller reconfiguration for non-linear systems,” Control Engineering Practice, vol. 8, no. 11, pp. 1223–1235, 2000. doi: 10.1016/S0967-0661(00)00074-5
|