IEEE/CAA Journal of Automatica Sinica
Citation: | Ashish Kumar Jain and Shubhendu Bhasin, "Tracking Control of Uncertain Nonlinear Systems With Unknown Constant Input Delay," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 420-425, Mar. 2020. doi: 10.1109/JAS.2019.1911807 |
[1] |
K. Gu and S. -I. Niculescu, “Survey on recent results in the stability and control of time-delay systems,” J. Dynamic Systems,Measurement,and Control, vol. 125, no. 2, pp. 158–165, 2003. doi: 10.1115/1.1569950
|
[2] |
J.-P. Richard, “Time-delay systems: an overview of some recent advances and open problems,” Automatica, vol. 39, no. 10, pp. 1667–1694, 2003. doi: 10.1016/S0005-1098(03)00167-5
|
[3] |
R. Sipahi, S.-I. Niculescu, C. T. Abdallah, W. Michiels, and K. Gu, “Stability and stabilization of systems with time delay,” IEEE Control Systems Magazine, vol. 31, no. 1, pp. 38–65, 2011. doi: 10.1109/MCS.2010.939135
|
[4] |
S.-I. Niculescu, Delay Effects On Stability: A Robust Control Approach. Springer Science & Business Media, 2001, vol. 269.
|
[5] |
E. Fridman, Introduction to Time-Delay Systems: Analysis and Control. Springer, 2014.
|
[6] |
K. J. Astrom, C. C. Hang, and B. Lim, “A new smith predictor for controlling a process with an integrator and long dead-time,” IEEE Trans. Automatic Control, vol. 39, no. 2, pp. 343–345, 1994. doi: 10.1109/9.272329
|
[7] |
A. T. Bahill, “A simple adaptive smith-predictor for controlling timedelay systems: a tutorial,” IEEE Control Systems Magazine, vol. 3, no. 2, pp. 16–22, 1983. doi: 10.1109/MCS.1983.1104748
|
[8] |
C. Kravaris and R. A. Wright, “Deadtime compensation for nonlinear processes,” AIChE J., vol. 35, no. 9, pp. 1535–1542, 1989. doi: 10.1002/aic.690350914
|
[9] |
Z. Artstein, “Linear systems with delayed controls: a reduction,” IEEE Trans. Automatic Control, vol. 27, no. 4, pp. 869–879, 1982. doi: 10.1109/TAC.1982.1103023
|
[10] |
M. Jankovic, “Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems,” IEEE Trans. Automatic Control, vol. 46, no. 7, pp. 1048–1060, 2001. doi: 10.1109/9.935057
|
[11] |
V. Kharitonov and A. Zhabko, “Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems,” Automatica, vol. 39, no. 1, pp. 15–20, 2003. doi: 10.1016/S0005-1098(02)00195-4
|
[12] |
G. Slater and W. Wells, “On the reduction of optimal time-delay systems to ordinary ones,” IEEE Trans. Automatic Control, vol. 17, no. 1, pp. 154–155, 1972. doi: 10.1109/TAC.1972.1099889
|
[13] |
W. Kwon and A. Pearson, “Feedback stabilization of linear systems with delayed control,” IEEE Trans. Automatic Control, vol. 25, no. 2, pp. 266–269, 1980. doi: 10.1109/TAC.1980.1102288
|
[14] |
Y. Fiagbedzi and A. Pearson, “Feedback stabilization of linear autonomous time lag systems,” IEEE Trans. Automatic Control, vol. 31, no. 9, pp. 847–855, 1986. doi: 10.1109/TAC.1986.1104417
|
[15] |
M. Jankovic, “Recursive predictor design for linear systems with time delay,” in Proc. American Control Conf., 2008, pp. 4904–4909.
|
[16] |
M. Krstic, “Lyapunov tools for predictor feedbacks for delay systems: inverse optimality and robustness to delay mismatch,” Automatica, vol. 44, no. 11, pp. 2930–2935, 2008. doi: 10.1016/j.automatica.2008.04.010
|
[17] |
M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Springer, 2009.
|
[18] |
M. Krstic, “On compensating long actuator delays in nonlinear control,” IEEE Trans. Automatic Control, vol. 53, no. 7, pp. 1684–1688, 2008. doi: 10.1109/TAC.2008.928123
|
[19] |
M. Krstic, “Input delay compensation for forward complete and strictfeedforward nonlinear systems,” IEEE Trans. Automatic Control, vol. 55, no. 2, pp. 287–303, 2010. doi: 10.1109/TAC.2009.2034923
|
[20] |
F. Mazenc and P. Bliman, “Backstepping design for time-delay nonlinear systems,” IEEE Trans. Automatic Control, vol. 51, no. 1, pp. 149–154, 2006. doi: 10.1109/TAC.2005.861701
|
[21] |
F. Mazenc, S.-I. Niculescu, and M. Bekaik, “Backstepping for nonlinear systems with delay in the input revisited,” SIAM J. Control and Optimization, vol. 49, no. 6, pp. 2263–2278, 2011. doi: 10.1137/100819023
|
[22] |
H.-L. Choi and J.-T. Lim, “Asymptotic stabilization of an input-delayed chain of integrators with nonlinearity,” Systems &Control Letters, vol. 59, no. 6, pp. 374–379, 2010.
|
[23] |
F. Mazenc, M. Malisoff, and Z. Lin, “Further results on input-to-state stability for nonlinear systems with delayed feedbacks,” Automatica, vol. 44, no. 9, pp. 2415–2421, 2008. doi: 10.1016/j.automatica.2008.01.024
|
[24] |
A. Y. Aleksandrov, G.-D. Hu, and A. P. Zhabko, “Delay-independent stability conditions for some classes of nonlinear systems,” IEEE Trans. Automatic Control, vol. 59, no. 8, pp. 2209–2214, 2014. doi: 10.1109/TAC.2014.2299012
|
[25] |
N. Sharma, S. Bhasin, Q. Wang, and W. E. Dixon, “Predictor-based control for an uncertain Euler-Lagrange system with input delay,” Automatica, vol. 47, no. 11, pp. 2332–2342, 2011. doi: 10.1016/j.automatica.2011.03.016
|
[26] |
D. Bresch-Pietri and M. Krstic, “Adaptive trajectory tracking despite unknown input delay and plant parameters,” Automatica, vol. 45, no. 9, pp. 2074–2081, 2009. doi: 10.1016/j.automatica.2009.04.027
|
[27] |
D. Bresch-Pietri, J. Chauvin, and N. Petit, “Adaptive control scheme for uncertain time-delay systems,” Automatica, vol. 48, no. 8, pp. 1536–1552, 2012. doi: 10.1016/j.automatica.2012.05.056
|
[28] |
N. Fischer, A. Dani, N. Sharma, and W. E. Dixon, “Saturated control of an uncertain nonlinear system with input delay,” Automatica, vol. 49, no. 6, pp. 1741–1747, 2013. doi: 10.1016/j.automatica.2013.02.013
|
[29] |
D. Bresch-Pietri and M. Krstic, “Delay-adaptive control for nonlinear systems,” IEEE Trans. Automatic Control, vol. 59, no. 5, pp. 1203–1218, 2014. doi: 10.1109/TAC.2014.2298711
|
[30] |
D. Yue, “Robust stabilization of uncertain systems with unknown input delay,” Automatica, vol. 40, no. 2, pp. 331–336, 2004. doi: 10.1016/j.automatica.2003.10.005
|
[31] |
A. K. Jain and S. Bhasin, “Adaptive tracking control of uncertain nonlinear systems with unknown input delay,” in Proc. IEEE Multi-Conf. Systems and Control, 2015, pp. 1686–1691.
|
[32] |
D. Bresch-Pietri, J. Chauvin, and N. Petit, “Adaptive backstepping controller for uncertain systems with unknown input time-delay. application to SI engines,” in Proc. 49th IEEE Conf. Decision and Control. 2010, pp. 3680–3687.
|
[33] |
N. Bekiaris-Liberis and M. Krstic, “Compensation of time-varying input and state delays for nonlinear systems,” J. Dynamic Systems,Measurement,and Control, vol. 134, no. 1, pp. 011009, 2012. doi: 10.1115/1.4005278
|
[34] |
R. Kamalapurkar, N. Fischer, S. Obuz, and W. Dixon, “Time-varying input and state delay compensation for uncertain nonlinear systems,” IEEE Trans. Automatic Control, vol. 61, no. 3, pp. 834–839, 2015.
|
[35] |
S. Obuz, J. R. Klotz, R. Kamalapurkar, and W. Dixon, “Unknown time-varying input delay compensation for uncertain nonlinear systems,” Automatica, vol. 76, pp. 222–229, 2017. doi: 10.1016/j.automatica.2016.09.030
|
[36] |
W. Rudin, Principles of Mathematical Analysis. McGraw-Hill New York, 1964, vol. 3.
|
[37] |
D. Chen and D. E. Seborg, “PI/PID controller design based on direct synthesis and disturbance rejection,” Industrial &Engineering Chemistry Research, vol. 41, no. 19, pp. 4807–4822, 2002.
|