A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 2
Mar.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Ashish Kumar Jain and Shubhendu Bhasin, "Tracking Control of Uncertain Nonlinear Systems With Unknown Constant Input Delay," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 420-425, Mar. 2020. doi: 10.1109/JAS.2019.1911807
Citation: Ashish Kumar Jain and Shubhendu Bhasin, "Tracking Control of Uncertain Nonlinear Systems With Unknown Constant Input Delay," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 420-425, Mar. 2020. doi: 10.1109/JAS.2019.1911807

Tracking Control of Uncertain Nonlinear Systems With Unknown Constant Input Delay

doi: 10.1109/JAS.2019.1911807
More Information
  • A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay. The control law consists of feedback terms based on the integral of past control values and a novel filtered tracking error, capable of compensating for input delays. Suitable Lyapunov-Krasovskii functionals are used to prove global uniformly ultimately bounded (GUUB) tracking, provided certain sufficient gain conditions, dependent on the bound of the delay, are satisfied. Simulation results illustrate the performance and robustness of the controller for different values of input delay.

     

  • loading
  • 1 For simplicity of presentation, a second order system is considered in the paper, however, the development can be trivially extended to higher order system of the same form as (1).
    2 $ \mathbb{R}^{+} $ denotes a positive real value.
    3 The notation $ \mathcal{L}_{\infty} $ denotes the space of bounded Lebesgue measurable functions on $ [0, \infty) $.
  • [1]
    K. Gu and S. -I. Niculescu, “Survey on recent results in the stability and control of time-delay systems,” J. Dynamic Systems,Measurement,and Control, vol. 125, no. 2, pp. 158–165, 2003. doi: 10.1115/1.1569950
    [2]
    J.-P. Richard, “Time-delay systems: an overview of some recent advances and open problems,” Automatica, vol. 39, no. 10, pp. 1667–1694, 2003. doi: 10.1016/S0005-1098(03)00167-5
    [3]
    R. Sipahi, S.-I. Niculescu, C. T. Abdallah, W. Michiels, and K. Gu, “Stability and stabilization of systems with time delay,” IEEE Control Systems Magazine, vol. 31, no. 1, pp. 38–65, 2011. doi: 10.1109/MCS.2010.939135
    [4]
    S.-I. Niculescu, Delay Effects On Stability: A Robust Control Approach. Springer Science & Business Media, 2001, vol. 269.
    [5]
    E. Fridman, Introduction to Time-Delay Systems: Analysis and Control. Springer, 2014.
    [6]
    K. J. Astrom, C. C. Hang, and B. Lim, “A new smith predictor for controlling a process with an integrator and long dead-time,” IEEE Trans. Automatic Control, vol. 39, no. 2, pp. 343–345, 1994. doi: 10.1109/9.272329
    [7]
    A. T. Bahill, “A simple adaptive smith-predictor for controlling timedelay systems: a tutorial,” IEEE Control Systems Magazine, vol. 3, no. 2, pp. 16–22, 1983. doi: 10.1109/MCS.1983.1104748
    [8]
    C. Kravaris and R. A. Wright, “Deadtime compensation for nonlinear processes,” AIChE J., vol. 35, no. 9, pp. 1535–1542, 1989. doi: 10.1002/aic.690350914
    [9]
    Z. Artstein, “Linear systems with delayed controls: a reduction,” IEEE Trans. Automatic Control, vol. 27, no. 4, pp. 869–879, 1982. doi: 10.1109/TAC.1982.1103023
    [10]
    M. Jankovic, “Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems,” IEEE Trans. Automatic Control, vol. 46, no. 7, pp. 1048–1060, 2001. doi: 10.1109/9.935057
    [11]
    V. Kharitonov and A. Zhabko, “Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems,” Automatica, vol. 39, no. 1, pp. 15–20, 2003. doi: 10.1016/S0005-1098(02)00195-4
    [12]
    G. Slater and W. Wells, “On the reduction of optimal time-delay systems to ordinary ones,” IEEE Trans. Automatic Control, vol. 17, no. 1, pp. 154–155, 1972. doi: 10.1109/TAC.1972.1099889
    [13]
    W. Kwon and A. Pearson, “Feedback stabilization of linear systems with delayed control,” IEEE Trans. Automatic Control, vol. 25, no. 2, pp. 266–269, 1980. doi: 10.1109/TAC.1980.1102288
    [14]
    Y. Fiagbedzi and A. Pearson, “Feedback stabilization of linear autonomous time lag systems,” IEEE Trans. Automatic Control, vol. 31, no. 9, pp. 847–855, 1986. doi: 10.1109/TAC.1986.1104417
    [15]
    M. Jankovic, “Recursive predictor design for linear systems with time delay,” in Proc. American Control Conf., 2008, pp. 4904–4909.
    [16]
    M. Krstic, “Lyapunov tools for predictor feedbacks for delay systems: inverse optimality and robustness to delay mismatch,” Automatica, vol. 44, no. 11, pp. 2930–2935, 2008. doi: 10.1016/j.automatica.2008.04.010
    [17]
    M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Springer, 2009.
    [18]
    M. Krstic, “On compensating long actuator delays in nonlinear control,” IEEE Trans. Automatic Control, vol. 53, no. 7, pp. 1684–1688, 2008. doi: 10.1109/TAC.2008.928123
    [19]
    M. Krstic, “Input delay compensation for forward complete and strictfeedforward nonlinear systems,” IEEE Trans. Automatic Control, vol. 55, no. 2, pp. 287–303, 2010. doi: 10.1109/TAC.2009.2034923
    [20]
    F. Mazenc and P. Bliman, “Backstepping design for time-delay nonlinear systems,” IEEE Trans. Automatic Control, vol. 51, no. 1, pp. 149–154, 2006. doi: 10.1109/TAC.2005.861701
    [21]
    F. Mazenc, S.-I. Niculescu, and M. Bekaik, “Backstepping for nonlinear systems with delay in the input revisited,” SIAM J. Control and Optimization, vol. 49, no. 6, pp. 2263–2278, 2011. doi: 10.1137/100819023
    [22]
    H.-L. Choi and J.-T. Lim, “Asymptotic stabilization of an input-delayed chain of integrators with nonlinearity,” Systems &Control Letters, vol. 59, no. 6, pp. 374–379, 2010.
    [23]
    F. Mazenc, M. Malisoff, and Z. Lin, “Further results on input-to-state stability for nonlinear systems with delayed feedbacks,” Automatica, vol. 44, no. 9, pp. 2415–2421, 2008. doi: 10.1016/j.automatica.2008.01.024
    [24]
    A. Y. Aleksandrov, G.-D. Hu, and A. P. Zhabko, “Delay-independent stability conditions for some classes of nonlinear systems,” IEEE Trans. Automatic Control, vol. 59, no. 8, pp. 2209–2214, 2014. doi: 10.1109/TAC.2014.2299012
    [25]
    N. Sharma, S. Bhasin, Q. Wang, and W. E. Dixon, “Predictor-based control for an uncertain Euler-Lagrange system with input delay,” Automatica, vol. 47, no. 11, pp. 2332–2342, 2011. doi: 10.1016/j.automatica.2011.03.016
    [26]
    D. Bresch-Pietri and M. Krstic, “Adaptive trajectory tracking despite unknown input delay and plant parameters,” Automatica, vol. 45, no. 9, pp. 2074–2081, 2009. doi: 10.1016/j.automatica.2009.04.027
    [27]
    D. Bresch-Pietri, J. Chauvin, and N. Petit, “Adaptive control scheme for uncertain time-delay systems,” Automatica, vol. 48, no. 8, pp. 1536–1552, 2012. doi: 10.1016/j.automatica.2012.05.056
    [28]
    N. Fischer, A. Dani, N. Sharma, and W. E. Dixon, “Saturated control of an uncertain nonlinear system with input delay,” Automatica, vol. 49, no. 6, pp. 1741–1747, 2013. doi: 10.1016/j.automatica.2013.02.013
    [29]
    D. Bresch-Pietri and M. Krstic, “Delay-adaptive control for nonlinear systems,” IEEE Trans. Automatic Control, vol. 59, no. 5, pp. 1203–1218, 2014. doi: 10.1109/TAC.2014.2298711
    [30]
    D. Yue, “Robust stabilization of uncertain systems with unknown input delay,” Automatica, vol. 40, no. 2, pp. 331–336, 2004. doi: 10.1016/j.automatica.2003.10.005
    [31]
    A. K. Jain and S. Bhasin, “Adaptive tracking control of uncertain nonlinear systems with unknown input delay,” in Proc. IEEE Multi-Conf. Systems and Control, 2015, pp. 1686–1691.
    [32]
    D. Bresch-Pietri, J. Chauvin, and N. Petit, “Adaptive backstepping controller for uncertain systems with unknown input time-delay. application to SI engines,” in Proc. 49th IEEE Conf. Decision and Control. 2010, pp. 3680–3687.
    [33]
    N. Bekiaris-Liberis and M. Krstic, “Compensation of time-varying input and state delays for nonlinear systems,” J. Dynamic Systems,Measurement,and Control, vol. 134, no. 1, pp. 011009, 2012. doi: 10.1115/1.4005278
    [34]
    R. Kamalapurkar, N. Fischer, S. Obuz, and W. Dixon, “Time-varying input and state delay compensation for uncertain nonlinear systems,” IEEE Trans. Automatic Control, vol. 61, no. 3, pp. 834–839, 2015.
    [35]
    S. Obuz, J. R. Klotz, R. Kamalapurkar, and W. Dixon, “Unknown time-varying input delay compensation for uncertain nonlinear systems,” Automatica, vol. 76, pp. 222–229, 2017. doi: 10.1016/j.automatica.2016.09.030
    [36]
    W. Rudin, Principles of Mathematical Analysis. McGraw-Hill New York, 1964, vol. 3.
    [37]
    D. Chen and D. E. Seborg, “PI/PID controller design based on direct synthesis and disturbance rejection,” Industrial &Engineering Chemistry Research, vol. 41, no. 19, pp. 4807–4822, 2002.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (1472) PDF downloads(127) Cited by()

    Highlights

    • This design technique is suitable for unknown constant input delay compensation of uncertain nonlinear systems.
    • A novel control law based on the integral of the previous values of control input, is developed for achieving this objective.
    • A global uniformly ultimately bounded tracking result is obtained.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return