IEEE/CAA Journal of Automatica Sinica
Citation: | Xiaofei Zhang, Hongbin Ma, Wenchao Zuo, and Man Luo, "Adaptive Control of Discrete-time Nonlinear Systems Using ITF-ORVFL," IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 556-563, Mar. 2022. doi: 10.1109/JAS.2019.1911801 |
[1] |
E. Rios-Patron and R. D. Braatz, “On the identification and control of dynamical systems using neural networks,” IEEE Trans. Neural Networks, vol. 8, no. 2, pp. 452–452, Mar. 1997.
|
[2] |
M. A. Halali, V. Azari, M. Arabloo, A. H. Mohammadi, and A. Bahadori, “Application of a radial basis function neural network to estimate pressure gradient in water-oil pipelines,” J. Taiwan Institute of Chemical Engineers, vol. 58, pp. 189–202, Jan. 2016. doi: 10.1016/j.jtice.2015.06.042
|
[3] |
L. Liu, Y. J. Liu, and S. C. Tong, “Fuzzy based multi-error constraint control for switched nonlinear systems and its applications,” IEEE Trans. Fuzzy Systems, 2018.
|
[4] |
L. Liu, Y. J. Liu, and S. C. Tong, “Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems,” IEEE Trans. Cybernetics, vol. 49, no. 7, pp. 2536–2545, Jul. 2019. doi: 10.1109/TCYB.2018.2828308
|
[5] |
T. T. Gao, Y. J. Liu, L. Liu, and D. P. Li, “Adaptive neural networkbased control for a class of nonlinear pure-feedback systems with time-varying full state constraints,” IEEE/CAA. J. Autom. Sinica, vol. 5, no. 5, pp. 923–933, Sep. 2018. doi: 10.1109/JAS.2018.7511195
|
[6] |
G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: A new learning scheme of feedforward neural networks,” Neural Networks, vol. 2, no. 3, pp. 985–990, 2004.
|
[7] |
G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: Theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, Dec. 2006. doi: 10.1016/j.neucom.2005.12.126
|
[8] |
N. Y. Liang, G. B. Huang, P. Saratchandran, and N. Sundararajan, “A fast and accurate online sequential learning algorithm for feedforward networks,” IEEE Trans. Neural Networks, vol. 17, no. 6, pp. 1411–1423, 2006. doi: 10.1109/TNN.2006.880583
|
[9] |
H. T. Huynh and Y. Won, “Regularized online sequential learning algorithm for single-hidden layer feed forward neural networks,” Pattern Recognition Letters, vol. 32, no. 14, pp. 1930–1935, 2011. doi: 10.1016/j.patrec.2011.07.016
|
[10] |
X. H. Gao, K. I. Wong, P. K. Wong, and C. M. Vong, “Adaptive control of rapidly time-varying discrete-time system using initial-training-free online extreme learning machine,” Neurocomputing, vol. 194, pp. 117–125, 2016. doi: 10.1016/j.neucom.2016.01.071
|
[11] |
S. Dehuri and S. B. Cho, “A comprehensive survey on functional link neural networks and an adaptive PSO-BP learning for CFLNN,” Neural Computing and Applications, vol. 19, no. 2, pp. 187–205, 2010. doi: 10.1007/s00521-009-0288-5
|
[12] |
Y. H. Pao, Adaptive Pattern Recognition and Neural Networks. Addison-Wesley Publishing, Boston MA USA, 1989.
|
[13] |
Y. H. Pao, S. M. Phillips, and D. J. Sobajic, “Neuralnet computing and the intelligent control of systems,” Int. J. Control, vol. 56, no. 2, pp. 263–289, 2016.
|
[14] |
Y. H. Pao, G. H. Park, and D. J. Sobajic, “Learning and generalization characteristics of the random vector functional-link net,” Neurocomputing, vol. 6, no. 2, pp. 163–180, 1994. doi: 10.1016/0925-2312(94)90053-1
|
[15] |
L. Zhang and P. N. Suganthan, “A comprehensive evaluation of random vector functional link networks,” Information Sciences, vol. 367, pp. 1094–1105, Nov. 2016.
|
[16] |
B. Igelnik and Y. H. Pao, “Stochastic choice of basis functions in adaptive function approximation and the functional-link net,” IEEE Trans. Neural Networks, vol. 6, no. 6, pp. 1320–1329, 1995. doi: 10.1109/72.471375
|
[17] |
C. L. P. Chen, Z. L. Liu, and S. Feng, “Universal approximation capability of broad learning system and its structural variations,” IEEE Trans. Neural Networks and Learning Systems, vol. 30, no. 4, pp. 1191–1204, Apr. 1191.
|
[18] |
P. L. Bartlett, “The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network,” IEEE Trans. Information Theory, vol. 44, no. 2, pp. 525–536, 1998. doi: 10.1109/18.661502
|
[19] |
Y. H. Pao and S. M. Phillips, “The functional link net and learning optimal control,” Neurocomputing, vol. 9, no. 2, pp. 149–164, 1995. doi: 10.1016/0925-2312(95)00066-F
|
[20] |
C. Y. Sun, W. He, W. L. Ge, and C. Chang, “Adaptive neural network control of biped robots,” IEEE Trans. Systems Man Cybernetics-Systems, vol. 47, no. 2, pp. 315–326, Feb. 2017.
|
[21] |
F. C. Chen and H. K. Khalit, “Adaptive control of a class of nonlinear discrete-time systems using neural networks,” IEEE Trans. Autom. Control, vol. 40, no. 5, pp. 791–801, May 1995. doi: 10.1109/9.384214
|
[22] |
D. X. Ba, K. K. Ahn, and N. T. Tai, “Adaptive integraltype neural sliding mode control for pneumatic muscle actuator,” Int. J. Autom. Technology, vol. 8, no. 6, pp. 888–895, 2014. doi: 10.20965/ijat.2014.p0888
|
[23] |
A. H. Jafari, R. Dhaouadi, and A. Jhemi, “Nonlinear friction estimation in elastic drive systems using a dynamic neural network-based observer,” J. Advanced Computational Intelligence and Intelligent Infor-matics, vol. 17, no. 4, pp. 637–646, 2013. doi: 10.20965/jaciii.2013.p0637
|
[24] |
H. J. Liang, Y. Zhou, H. Ma, and Q. Zhou, “Adaptive distributed observer approach for cooperative containment control of nonidentical networks,” IEEE Trans. Systems Man Cybernetics-Systems, vol. 49, no. 2, pp. 299–307, Feb. 2019. doi: 10.1109/TSMC.2018.2791513
|
[25] |
F. J. Luan, J. Na, Y. B. Huang, and G. B. Gao, “Adaptive neural network control for robotic manipulators with guaranteed finite-time convergence,” Neurocomputing, vol. 337, pp. 153–164, Apr. 2019. doi: 10.1016/j.neucom.2019.01.063
|
[26] |
Y. C. Ouyang, L. Dong, L. Xue, and C. Y. Sun, “Adaptive control based on neural networks for an uncertain 2-DOF helicopter system with input deadzone and output constraints,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 807–815, 2019. doi: 10.1109/JAS.2019.1911495
|
[27] |
H. J. Yang and J. K. Liu, “An adaptive RBF neural network control method for a class of nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 457–462, 2018. doi: 10.1109/JAS.2017.7510820
|
[28] |
X. L. Li, C. Jia, D. X. Liu, and D. W. Ding, “Adaptive control of nonlinear discrete-time systems by using OS-ELM neural networks,” Abstract and Applied Analysis, 2014.
|
[29] |
C. Jia, X. L. Li, K. Wang, and D. W. Ding, “Adaptive control of nonlinear system using online error minimum neural networks,” ISA Trans., vol. 65, pp. 125–132, Nov. 2016. doi: 10.1016/j.isatra.2016.07.012
|