IEEE/CAA Journal of Automatica Sinica
Citation: | Timo Lintonen and Tomi Räty, "Self-Learning of Multivariate Time Series Using Perceptually Important Points," IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1318-1331, Nov. 2019. doi: 10.1109/JAS.2019.1911777 |
[1] |
S. S. Khan and M. G. Madden, " A survey of recent trends in one class classification, ” in Artificial Intelligence and Cognitive Science, L. Coyle and J. Freyne, Eds. Berlin, Heidelberg, Germany: Springer, 2010, pp. 188–197.
|
[2] |
O. Chapelle, B. Schlkopf, and A. Zien, Semi-Supervised Learning. Cambridge, USA: The MIT Press, 2010.
|
[3] |
S. D. Villalba and P. Cunningham, " An evaluation of dimension reduction techniques for one-class classification,” Artif. Intell. Rev., vol. 27, no. 4, pp. 273–294, Apr. 2007. doi: 10.1007/s10462-008-9082-5
|
[4] |
E. Ferretti, M. L. Errecalde, M. Anderka, and B. Stein, " On the use of reliable-negatives selection strategies in the PU learning approach for quality flaws prediction in wikipedia, ” in Proc. 25th Int. Workshop on Database and Expert Systems Applications, Munich, Germany, 2014, pp. 211–215.
|
[5] |
J. K. Rout, A. Dalmia, K. K. R. Choo, S. Bakshi, and S. K. Jena, " Revisiting semi-supervised learning for online deceptive review detection,” IEEE Access, vol. 5, pp. 1319–1327, Jan. 2017. doi: 10.1109/ACCESS.2017.2655032
|
[6] |
P. Nusrath Hameed, K. Verspoor, S. Kusljic, and S. Halgamuge, " Positive-unlabeled learning for inferring drug interactions based on heterogeneous attributes,” BMC Bioinformatics, vol. 18, pp. 140, Mar. 2017. doi: 10.1186/s12859-017-1546-7
|
[7] |
L. Wei and E. Keogh, " Semi-supervised time series classification, ” in Proc. 12th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 2006, pp. 748–753.
|
[8] |
I. Triguero, S. Garcia, and F. Herrera, " Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study,” Knowl. Inf. Syst., vol. 42, no. 2, pp. 245–284, Feb. 2015. doi: 10.1007/s10115-013-0706-y
|
[9] |
C. A. Ratanamahatana and D. Wanichsan, " Stopping criterion selection for efficient semi-supervised time series classification,” in Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, R. Lee, Ed. Berlin, Heidelberg, Germany: Springer, 2008, pp. 1–14.
|
[10] |
M. Gonzalez, C. Bergmeir, I. Triguero, Y. Rodriguez, and J. M. Benitez, " On the stopping criteria for k-nearest neighbor in positive unlabeled time series classification problems,” Inf. Sci., vol. 328, pp. 42–59, Jan. 2016. doi: 10.1016/j.ins.2015.07.061
|
[11] |
Y. P. Chen, B. Hu, E. J. Keogh, and G. E. A. P. A. Batista, " DTW-D: time series semi-supervised learning from a single example, ” in Proc. 19th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Chicago, Illinois, USA, 2013, pp. 383–391.
|
[12] |
X. P. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana, " Fast time series classification using numerosity reduction,” in Proc. 23rd Int. Conf. Machine Learning, Pittsburgh, Pennsylvania, USA, 2006, pp. 1033–1040.
|
[13] |
H. S. Lei and B. Y. Sun, " A study on the dynamic time warping in kernel machines, ” in Proc. 3rd Int. IEEE Conf. Signal-Image Technologies and Internet-Based System, Shanghai, China, 2007, pp. 839–845.
|
[14] |
F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. P. Chen, and E. Keogh, " Dynamic time warping averaging of time series allows faster and more accurate classification, ” in Proc. IEEE Int. Conf. Data Mining, Shenzhen, China, 2014, pp. 470–479.
|
[15] |
S. A. More and P. J. Deore, " Gait recognition by cross wavelet transform and graph model,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 718–726, May 2018. doi: 10.1109/JAS.2018.7511081
|
[16] |
A. Bagnall, J. Lines, J. Hills, and A. Bostrom, " Time-series classification with cote: the collective of transformation-based ensembles,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 9, pp. 2522–2535, Mar. 2015. doi: 10.1109/TKDE.2015.2416723
|
[17] |
H. Sakoe and S. Chiba, " Dynamic programming algorithm optimization for spoken word recognition,” IEEE Trans. Acoust.,Speech,Signal Process., vol. 26, no. 1, pp. 43–49, Feb. 1978. doi: 10.1109/TASSP.1978.1163055
|
[18] |
E. Keogh and C. A. Ratanamahatana, " Exact indexing of dynamic time warping,” Knowl. Inf. Syst., vol. 7, no. 3, pp. 358–386, Mar. 2005. doi: 10.1007/s10115-004-0154-9
|
[19] |
C. A. Ratanamahatana and E. Keogh, " Three myths about dynamic time warping data mining,” pp. 506–510. [Online]. Available:https://epubs.siam.org/doi/abs/10.1137/1.9781611972757.50
|
[20] |
M. Congedo, C. Özen, and L. Sherlin, " Notes on EEG resampling by natural cubic spline interpolation,” J. Neurotherapy, vol. 6, no. 4, pp. 73–80, Sep. 2002. doi: 10.1300/J184v06n04_08
|
[21] |
M. N. Nguyen, X. L. Li, and S. K. Ng, " Positive unlabeled learning for time series classification,” in Proc. 22nd Int. Joint Conf. Artificial Intelligence, Barcelona, Catalonia, Spain, 2011, pp. 1421–1426.
|
[22] |
N. Begum, B. Hu, T. Rakthanmanon, and E. Keogh, " A minimum description length technique for semi-supervised time series classification, ” in Integration of Reusable Systems, T. Bouabana-Tebibel and S. H. Rubin, Eds. Cham, Germany: Springer, 2014, pp. 171–192.
|
[23] |
M. N. Nguyen, X. L. Li, and S. K. Ng, " Ensemble based positive unlabeled learning for time series classification, ” in Database Systems for Advanced Applications, S. G. Lee, Z. Y. Peng, X. F. Zhou, Y. S. Moon, R. Unland, and J. Yoo, Eds. Berlin, Heidelberg, Germany: Springer, 2012, pp. 243–257.
|
[24] |
A. Mojsilović, " Perceptual indexing of multivariate time series, ” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Honolulu, HI, USA, 2007, pp. II-533–II-536.
|
[25] |
D. J. Ketchen Jr. and C. L. Shook, " The application of cluster analysis in strategic management research: an analysis and critique,” Strateg. Manag. J., vol. 17, no. 6, pp. 441–458, Jun. 1996. doi: 10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
|
[26] |
P. Y. Zhang, S. Shu, and M. C. Zhou, " An online fault detection model and strategies based on SVM-grid in clouds,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 445–456, Mar. 2018. doi: 10.1109/JAS.2017.7510817
|
[27] |
H. A. Dau, E. Keogh, K. Kamgar, C. C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanamahatana, Y. P.Chen, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista, " The UCR time series classification archive,” 2019 [Online]. Available: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.
|
[28] |
A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, " The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances,” Data Mining Knowl. Discovery, vol. 31, no. 3, pp. 606–660, May 2017. doi: 10.1007/s10618-016-0483-9
|
[29] |
H. Ding, G. Trajcevski, P. Scheuermann, X. Y. Wang, and E. Keogh, " Querying and mining of time series data: experimental comparison of representations and distance measures,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1542–1552, Aug. 2008. doi: 10.14778/1454159.1454226
|
[30] |
G. E. A. P. A. Batista, E. J. Keogh, O. M. Tataw, and V. M. A. De Souza, " CID: an efficient complexity-invariant distance for time series,” Data Mining Knowl. Discovery, vol. 28, no. 3, pp. 634–669, May 2014. doi: 10.1007/s10618-013-0312-3
|
[31] |
R. T. Olszewski, " Generalized feature extraction for structural pattern recognition in time-series data,” Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA, USA, 2001.
|
[32] |
J. Demšar, " Statistical comparisons of classifiers over multiple data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006.
|
[33] |
Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh, " The UCR Time Series Archive,” 2019 [Online]. Available: http://www.ieee-jas.org/en/article/doi/10.1109/JAS.2019.1911747
|
[34] |
M. Friedman, " The use of ranks to avoid the assumption of normality implicit in the analysis of variance,” J. Am. Stat. Assoc., vol. 32, no. 200, pp. 675–701, Dec. 1937. doi: 10.1080/01621459.1937.10503522
|
[35] |
F. Wilcoxon, " Individual comparisons by ranking methods,” Biometrics Bull., vol. 1, no. 6, pp. 80–83, Dec. 1945. doi: 10.2307/3001968
|
[36] |
S. Holm, " A simple sequentially rejective multiple test procedure,” Scand. J. Stat., vol. 6, no. 2, pp. 65–70, 1979.
|
[37] |
W. Haynes, " Holm’s method,” in Encyclopedia of Systems Biology, W. Dubitzky, O. Wolkenhauer, K. H. Cho, and H. Yokota, Eds. New York, NY, USA: Springer, 2013.
|
[38] |
H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller, " Deep learning for time series classification: a review,” Data Mining Knowl. Discovery, vol. 33, no. 4, pp. 917–963, Jul. 2019. doi: 10.1007/s10618-019-00619-1
|
[39] |
M. W. Kadous, " Temporal classification: extending the classification paradigm to multivariate time series,” Ph.D. dissertation, University of New South Wales, Sydney, Australia, 2002.
|
[40] |
D. Y. Yeung, H. Chang, Y. M. Xiong, S. George, R. Kashi, T. Matsumoto, and G. Rigoll, " SVC2004: first international signature verification competition,” in Biometric Authentication, D. Zhang and A. K. Jain, Eds. Berlin, Heidelberg, Germany: Springer, 2004, pp. 16–22.
|
[41] |
J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo, " OpenML: networked science in machine learning,” ACM SIGKDD Explor. Newsl., vol. 15, no. 2, pp. 49–60, Dec. 2013.
|
[42] |
C. Gong, T. L. Liu, J. Yang, and D. C. Tao, " Large-margin label-calibrated support vector machines for positive and unlabeled learning,” IEEE Trans. Neural Networks and Learning Systems, pp. 1-13, 2019.
|
[43] |
Y. S. Jeong, M. K. Jeong, and O. A. Omitaomu, " Weighted dynamic time warping for time series classification,” Pattern Recognit., vol. 44, no. 9, pp. 2231–2240, Sep. 2011. doi: 10.1016/j.patcog.2010.09.022
|
[44] |
F. Petitjean, A. Ketterlin, and P. Gancarski, " A global averaging method for dynamic time warping, with applications to clustering,” Pattern Recognit., vol. 44, no. 3, pp. 678–693, Mar. 2011. doi: 10.1016/j.patcog.2010.09.013
|
[45] |
M. Cuturi and M. Blondel, " Soft-DTW: a differentiable loss function for time-series,” in Proc. 34th Int. Conf. Machine Learning, Sydney, Australia, 2017, pp. 894–903.
|