A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 6
Nov.  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Bin Xia, Wenhao Yuan, Nan Xie and Caihong Li, "A Novel Statistical Manifold Algorithm for Position Estimation," IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1513-1518, Nov. 2019. doi: 10.1109/JAS.2019.1911771
Citation: Bin Xia, Wenhao Yuan, Nan Xie and Caihong Li, "A Novel Statistical Manifold Algorithm for Position Estimation," IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1513-1518, Nov. 2019. doi: 10.1109/JAS.2019.1911771

A Novel Statistical Manifold Algorithm for Position Estimation

doi: 10.1109/JAS.2019.1911771
Funds:  This work was supported by the National Natural Science Foundation of China (61701286, 61473179) and Shandong Provincial Natural Science Foundation of China (ZR2017MF047)
More Information
  • In this paper, a novel statistical manifold algorithm is proposed for position estimation of sensor nodes in a wireless network, making full use of distance information available among unknown nodes and simultaneous localization of multiple unknown nodes. To begin, a ranging model including the distance information among unknown nodes is established. With the reparameterization of the natural parameter and natural statistic, the solution problem of the ranging model is transformed into a parameter estimation problem of the curved exponential family. Then, a natural gradient method is adopted to deal with the parameter estimation problem of the curved exponential family. To ensure the convergence of the proposed algorithm, a particle swarm optimization method is utilized to obtain initial values of the unknown nodes. Experimental results indicate that the proposed algorithm can improve the positioning accuracy, compared with the traditional algorithm.

     

  • loading
  • [1]
    F. Viani, M. Bertolli, and A. Polo, " Low-cost wireless system for agrochemical dosage reduction in precision farming,” IEEE Sensors J., vol. 17, no. 1, pp. 5–6, 2017. doi: 10.1109/JSEN.2016.2622244
    [2]
    X. Li, X. H. Wei, X. Chen, X. L. Tang, T. M. Xie, and L. Jia, " Construction and specification of complex events from sensor network,” Int. Agricultural Engineering J., vol. 9, no. 8, pp. 3173–3180, 2013.
    [3]
    Y. Rao, W. J. Xu, J. Zhu, Z. H. Jiang, R. C. Wang, and S. W. Li, " Practical deployment of an in-field wireless sensor network in date palm orchard,” Int. J. Distributed Sensor Networks, vol. 13, no. 5, pp. 11, 2017.
    [4]
    M. Schwager, M. P. Vitus, S. Powers, D. Rus, and C. J. Tomlin, " Robust adaptive coverage control for robotic sensor networks,” IEEE Trans. Control of Network Systems, vol. 4, no. 3, pp. 462–476, Sep. 2017. doi: 10.1109/TCNS.2015.2512326
    [5]
    W. He, Z. J. Li, and C. L. P. Chen, " A survey of human-centered intelligent robots: issues and challenges,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 602–609, Oct. 2017. doi: 10.1109/JAS.2017.7510604
    [6]
    W. X. Xue, W. N. Qiu, X. H. Hua, and K. G. Yu, " Improved Wi-Fi RSSI measurement for indoor localization,” IEEE Sensors J., vol. 17, no. 7, pp. 2224–2230, Apr. 2017. doi: 10.1109/JSEN.2017.2660522
    [7]
    H. Sallouha, A. Chiumento, and S. Pollin, " Localization in long-range ultra narrow band IoT networks using RSSI”, in Proc. IEEE Int. Conf. Communications, pp. 1–6, Jul. 2017.
    [8]
    Z. D. Yin, K. Cui, Z. L. Wu, and L. Yin, " Entropy-based TOA estimation and SVM-based ranging error mitigation in UWB ranging systems,” Sensors (Switzerland), vol. 15, no. 5, pp. 11701–11724, May 2015. doi: 10.3390/s150511701
    [9]
    A. Alsmady and F. Awad, " Optimal Wi-Fi access point placement for RSSI-based indoor localization using genetic algorithm”, in Proc. 8th Int. Conf. Information and Communication Systems, pp. 287–291, May. 2017.
    [10]
    Z. Ansari, R. Ghazizadeh, and Z. Shokhmzan, " Gradient descent approach to secure localization for underwater wireless sensor networks”, in Proc. 24th Iranian Conf. Electrical Engineering, pp. 103–107, Oct. 2016.
    [11]
    H. B. Wang and H. B. Wang, " Research of localization algorithm based on the steepest descent method MDS in wireless sensor network,” WIT Trans. Modelling and Simulation, vol. 60, pp. 1249–1256, Jun. 2014.
    [12]
    M. Naraghi-Pour and G. C. Rojas, " A Novel algorithm for distributed localization in wireless sensor networks,” ACM Trans. Sensor Networks, vol. 11, no. 1, pp. 1–25, Aug. 2014.
    [13]
    Z. Yang and J. Laaksonen, " Principal whitened gradient for information geometry,” Neural Networks, vol. 21, no. 2–3, pp. 232–240, 2008. doi: 10.1016/j.neunet.2007.12.016
    [14]
    Y. Q. Cheng, X. Z. Wang, T. Caelli, X. Li, and B. Moran, " Optimal nonlinear estimation for localization of wireless sensor networks,” IEEE Trans. Signal Processing, vol. 59, no. 12, pp. 5674–5685, Dec. 2011. doi: 10.1109/TSP.2011.2166547
    [15]
    Y. Q. Cheng, " Information theory and geometric methods of radar signal processing”, Ph.D. dissertation, University of Defense Technology, Changsha, China, pp. 118–120, 2012.
    [16]
    X. Z. Wang, Y. Q. Cheng, and B. Moran, Nonlinear parameter estimation in statistical manifolds”, in Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop, pp. 101–104, 2014.
    [17]
    J. Kennedy and R.C. Eberhart, " Particle swarm optimization”, in Proc. IEEE Int. Conf. Neural Networks, pp. 1942–1948, 1995.
    [18]
    W. Dong and M. C. Zhou, " A supervised learning and control method to improve particle swarm optimization algorithms,” IEEE Trans. Systems,Man and Cybernetics:Systems, vol. 47, no. 7, pp. 1149–1159, Jul. 2017. doi: 10.1109/TSMC.2016.2560147
    [19]
    J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, " Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Trans. Evolutionary Computation, vol. 10, no. 3, pp. 281–295, Jun. 2006. doi: 10.1109/TEVC.2005.857610
    [20]
    K. Zhang, Q. J. Huang, and Y. M. Zhang, " Enhancing comprehensive learning particle swarm optimization with local optima topology,” Information Sciences, vol. 471, pp. 1–18, Jan. 2019. doi: 10.1016/j.ins.2018.08.049

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1384) PDF downloads(163) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return