IEEE/CAA Journal of Automatica Sinica
Citation: | Haifeng Niu, Avimanyu Sahoo, Chandreyee Bhowmick and S. Jagannathan, "An Optimal Hybrid Learning Approach for Attack Detection in Linear Networked Control Systems," IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1404-1416, Nov. 2019. doi: 10.1109/JAS.2019.1911762 |
[1] |
P. Lee, A. Clark, L. Bushnell, and R. Poovendran, " A passivity framework for modeling and mitigating wormhole attacks on networked control systems,” IEEE Trans. Automatic Control, vol. 59, no. 12, pp. 3224–3237, 2014. doi: 10.1109/TAC.2014.2351871
|
[2] |
Z. Lu, W. Wang, and C. Wang, " Modeling, evaluation and detection of jamming attacks in time-critical wireless applications,” IEEE Trans. Mobile Computing, vol. 13, no. 8, pp. 1746–1759, 2014. doi: 10.1109/TMC.2013.146
|
[3] |
M. Zhu and S. Martínez, " On the performance analysis of resilient networked control systems under replay attacks,” IEEE Trans. Automatic Control, vol. 59, no. 3, pp. 804–808, 2014. doi: 10.1109/TAC.2013.2279896
|
[4] |
A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, " A secure control framework for resource-limited adversaries,” Automatica, vol. 51, pp. 135–148, 2015. doi: 10.1016/j.automatica.2014.10.067
|
[5] |
H. Sandberg, S. Amin, and K. H. Johansson, " Cyberphysical security in networked control systems: An introduction to the issue,” IEEE Control Systems, vol. 35, no. 1, pp. 20–23, 2015. doi: 10.1109/MCS.2014.2364708
|
[6] |
D. W. Browning, " Flow control in high-speed communication networks,” IEEE Trans. Communications, vol. 42, no. 7, pp. 2480–2489, 1994. doi: 10.1109/26.297859
|
[7] |
C.-p. Li and E. Modiano, " Receiver-based flow control for networks in overload,” IEEE/ACM Trans. Networking, vol. 23, no. 2, pp. 616–630, 2015. doi: 10.1109/TNET.2014.2302445
|
[8] |
H. Xu, S. Jagannathan, and F. L. Lewis, " Stochastic optimal control of unknown linear networked control system in the presence of random delays and packet losses,” Automatica, vol. 48, no. 6, pp. 1017–1030, 2012. doi: 10.1016/j.automatica.2012.03.007
|
[9] |
Y. Chen, S. Kar, and J. M. Moura, " Cyber-physical systems: Dynamic sensor attacks and strong observability, ” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, pp. 1752–1756.
|
[10] |
H. Fawzi, P. Tabuada, and S. Diggavi, " Security for control systems under sensor and actuator attacks, ” in Proc. 51st IEEE Annual Conf. Decision and Control (CDC), , pp. 3412–3417.
|
[11] |
Y. Mo and B. Sinopoli, " Secure control against replay attacks,” in Proc. 47th IEEE Annual Allerton Conf. Communication, Control, and Computing, Allerton, pp. 911–918, 2009.
|
[12] |
Q. Zhao, H. Xu, and J. Sarangapani, " Finite-horizon near optimal adaptive control of uncertain linear discrete-time systems,” Optimal Control Applications and Methods, vol. 36, no. 6, pp. 853–872, 2015. doi: 10.1002/oca.2143
|
[13] |
H. Niu and S. Jagannathan, " Optimal defense and control for cyberphysical systems,” in Proc. 2015 IEEE Symposium Series on Computational Intelligence, pp. 634–639.
|
[14] |
A. Sahoo, V. Narayanan, and S. Jagannathan, " Optimal event-triggered control of uncertain linear networked control systems: A co-design approach,” in Proc. 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6.
|
[15] |
V. Narayanan and S. Jagannathan, " Event-triggered distributed control of nonlinear interconnected systems using online reinforcement learning with exploration,” IEEE Trans. Cybernetics, vol. 48, no. 9, pp. 2510–2519, 2018. doi: 10.1109/TCYB.2017.2741342
|
[16] |
A. Sahoo and S. Jagannathan, " Stochastic optimal regulation of nonlinear networked control systems by using event-driven adaptive dynamic programming,” IEEE Trans. Cybernetics, vol. 47, no. 2, pp. 425–438, 2017.
|
[17] |
H. Niu, C. Bhowmick, and S. Jagannathan, " Attack detection and approximation in nonlinear networked control systems using neural networks,” IEEE Trans. Neural Networks and Learning Systems, 2019. doi: 10.1109/TNNLS.2019.2900430
|
[18] |
F. Pasqualetti, F. Dörfler, and F. Bullo, " Attack detection and identi-fication in cyber-physical systems,” IEEE Trans. Automatic Control, vol. 58, no. 11, pp. 2715–2729, 2013. doi: 10.1109/TAC.2013.2266831
|
[19] |
F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. John Wiley & Sons, 2012.
|
[20] |
P. Tague, D. Slater, R. Poovendran, and G. Noubir, " Linear programming models for jamming attacks on network traffic flows, ” in Proc. 6th Int. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops, pp. 207–216.
|
[21] |
P. N. Raj and P. B. Swadas, " Dpraodv: a dyanamic learning system against blackhole attack in aodv based manet,” arXiv preprint arXiv:0909.2371, 2009.
|
[22] |
J. Sarangapani, Neural Network Control of Nonlinear Discrete-time Systems, vol. 21. CRC press, 2006.
|
[23] |
V. Narayanan and S. Jagannathan, " Distributed adaptive optimal regulation of uncertain large-scale interconnected systems using hybrid qlearning approach,” IET Control Theory &Applications, vol. 10, no. 12, pp. 1448–1457, 2016.
|
[24] |
H. Xu, S. Jagannathan, and F. Lewis, " Stochastic optimal design for unknown linear discrete-time system zero-sum games in input-output form under communication constraints,” Asian J. Control, vol. 16, no. 5, pp. 1263–1276, 2014. doi: 10.1002/asjc.804
|