IEEE/CAA Journal of Automatica Sinica
Citation: | Reza Asadi and Solmaz S. Kia, "Cycle Flow Formulation of Optimal Network Flow Problems and Respective Distributed Solutions," IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1251-1260, Sept. 2019. doi: 10.1109/JAS.2019.1911705 |
[1] |
D. P. Bertsekas, Network Optimization: Continuous and Discrete Models. Citeseer, 1998.
|
[2] |
K. Qin, C. Huang, N. Ganesan, K. Liu, and X. Chen, " Minimum cost multi-path parallel transmission with delay constraint by extending openflow,” China Communications, vol. 15, no. 3, pp. 15–26, 2018. doi: 10.1109/CC.2018.8331988
|
[3] |
A. Sinha and E. Modiano, " Optimal control for generalized networkflow problems,” IEEE/ACM Transactions on Networking (TON)
|
[4] |
C. Rosdahl, G. Nilsson, and G. Como, " On distributed optimal control of traffic flows in transportation networks,” in Proc. IEEE Conf. on Control Technology and Applications, pp. 903–908, 2018.
|
[5] |
S. Pourazarm and C. G. Cassandras, " Optimal routing of energyaware vehicles in transportation networks with inhomogeneous charging nodes,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 8, pp. 2515–2527, 2018. doi: 10.1109/TITS.2017.2752202
|
[6] |
K. Nakayama, C. Zhao, L. F. Bic, M. B. Dillencourt, and J. Brouwer, " Distributed power flow loss minimization control for future grid,” International Journal of Circuit Theory and Applications, vol. 43, no. 9, pp. 1209–1225, 2015. doi: 10.1002/cta.v43.9
|
[7] |
C. D. Nicholson and W. Zhang, " Optimal network flow: a predictive analytics perspective on the fixed-charge network flow problem,” Computers &Industrial Engineering, vol. 99, pp. 260–268, 2016.
|
[8] |
T. Soares, R. J. Bessa, P. Pinson, and H. Morais, " Active distribution grid management based on robust ac optimal power flow,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6229–6241, 2018. doi: 10.1109/TSG.2017.2707065
|
[9] |
J. Qin, Y. Chow, J. Yang, and R. Rajagopal, " Distributed online modified greedy algorithm for networked storage operation under uncertainty,” IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 1106–1118, 2016.
|
[10] |
K. M. Chandy, S. H. Low, U. Topcu, and H. Xu, " A simple optimal power flow model with energy storage,” in Proc. 49th IEEE Conf. on Decision and Control (CDC), pp. 1051–1057, 2010.
|
[11] |
S. Sun, J. A. Taylor, M. Dong, and B. Liang, " Distributed real-time phase balancing for power grids with energy storage,” in Proc. IEEE American Control Conf. (ACC), 2015, pp. 3032–3037.
|
[12] |
J. Lavaei and S. H. Low, " Zero duality gap in optimal power flow problem,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 92–107, 2012. doi: 10.1109/TPWRS.2011.2160974
|
[13] |
J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Püschel, " Distributed optimization with local domains: applications in MPC and network flows,” IEEE Transactions on Automatic Control, vol. 60, no. 7, pp. 2004–2009, 2015. doi: 10.1109/TAC.2014.2365686
|
[14] |
S. Rezaei, K. Kim, and E. Bozorgzadeh, " Scalable multi-queue data transfer scheme for fpga-based multi-accelerators,” in Proc. 2018 IEEE Int. Conf. on Computer Design (ICCD), pp. 374–380.
|
[15] |
A. Billionnet and É. Soutif, " An exact method based on lagrangian decomposition for the 0-1 quadratic knapsack problem,” European Journal of Operational Research, vol. 157, no. 3, pp. 565–575, 2004. doi: 10.1016/S0377-2217(03)00244-3
|
[16] |
H. Kellerer, U. Pferschy, and D. Pisinger, " Other knapsack problems,” in Knapsack Problems, pp. 389–424, Springer, 2004.
|
[17] |
M. A. Osorio, F. Glover, and P. Hammer, " Cutting and surrogate constraint analysis for improved multidimensional knapsack solutions,” Annals of Operations Research, vol. 117, no. 1-4, pp. 71–93, 2002.
|
[18] |
M. Esmaeili and A. Mosavi, " Notice of retraction variable reduction for multi-objective optimization using data mining techniques; application to aerospace structures,” in Proc. 2nd Int. Conf. Computer Engineering and Technology (ICCET), vol. 5, pp. V5-333.
|
[19] |
G. Wu, W. Pedrycz, H. Li, D. Qiu, M. Ma, and J. Liu, " Complexity reduction in the use of evolutionary algorithms to function optimization: a variable reduction strategy,” The Scientific World Journal, vol. 2013, 2013.
|
[20] |
S. Boyd and L. Vandenberghe, Convex optimization. England, US: CUP, 2004.
|
[21] |
M. T. Heath, " Some extensions of an algorithm for sparse linear least squares problems,” SIAM Journal on Scientific and Statistical Computing, vol. 3, no. 2, pp. 223–237, 1982. doi: 10.1137/0903014
|
[22] |
A. K. Cline and I. S. Dhillon, Computation of the Singular Value Decomposition. CRC Press, 2006.
|
[23] |
M. Khorramizadeh and N. Mahdavi-Amiri, " An efficient algorithm for sparse null space basis problem using abs methods,” Numerical Algorithms, vol. 62, no. 3, pp. 469–485, 2013. doi: 10.1007/s11075-012-9599-1
|
[24] |
Q. Ba, K. Savla, and G. Como, " Distributed optimal equilibrium selection for traffic flow over networks,” in Proc. IEEE Conf. on Decision and Control, 2015.
|
[25] |
Q. Peng and S. H. Low, " Distributed optimal power flow algorithm for radial networks, Ⅰ: Balanced single phase case,” IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 111–121, 2018. doi: 10.1109/TSG.2016.2546305
|
[26] |
M. P. Abraham and A. A. Kulkarni, " ADMM-Based algorithm for solving DC-OPF in a large electricity network considering transmission losses,” IET Generation,Transmission &Distribution, vol. 12, no. 21, pp. 5811–5823, 2018.
|
[27] |
Y. Zhang, M. Hong, E. Dall’Anese, S. V. Dhople, and Z. Xu, " Distributed controllers seeking ac optimal power flow solutions using ADMM,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4525–4537, 2018. doi: 10.1109/TSG.5165411
|
[28] |
J. D. Horton, " A polynomial-time algorithm to find the shortest cycle basis of a graph,” SIAM Journal on Computing, vol. 16, no. 2, pp. 358–366, 1987. doi: 10.1137/0216026
|
[29] |
R. Hariharan, T. Kavitha, and K. Mehlhorn, " Faster algorithms for minimum cycle basis in directed graphs,” SIAM Journal of Computing, vol. 38, no. 3, pp. 1430–1447, 2008.
|
[30] |
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, " Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends ® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.
|
[31] |
J. F. Mota, " Communication-Efficient algorithms for distributed optimization,” arXiv preprint arXiv: 1312.0263, 2013.
|
[32] |
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. 3th ed, MIT, 2009.
|
[33] |
R. Asadi, S. S. Kia, and A. Regan, " Cycle basis distributed ADMM solution for optimal network flow problem over bi-connected graphs,” in Proc. 54th IEEE Annual Allerton Conf. on Communication, Control, and Computing, pp. 717–723, 2016.
|
[34] |
A. Dharwadker and S. Pirzada, Graph Theory. CreateSpace Independent Publishing Platform, 2011.
|
[35] |
T. Leibfried, T. Mchedlidze, N. Meyer-Hübner, M. Nöllenburg, I. Rutter, P. Sanders, D. Wagner, and F. Wegner, " Operating power grids with few flow control buses,” in Proc. of the 6th ACM Int. Conf. on Future Energy Systems, pp. 289–294, 2015.
|
[36] |
J. Edmonds and R. M. Karp, " Theoretical improvements in algorithmic efficiency for network flow problems,” Journal of the ACM , vol. 19, no. 2, pp. 248–264, 1972. doi: 10.1145/321694.321699
|