IEEE/CAA Journal of Automatica Sinica
Citation: | Jun Yang, Ximan Wang, Simone Baldi, Satish Singh and Stefano Farì, "A Software-in-the-Loop Implementation of Adaptive Formation Control for Fixed-Wing UAVs," IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1230-1239, Sept. 2019. doi: 10.1109/JAS.2019.1911702 |
[1] |
H. Chao, Y. Cao, and Y. Chen, " Autopilots for small unmanned aerial vehicles: a survey,” International Journal of Control,Automation and Systems, vol. 8, no. 1, pp. 36–44, 2010. doi: 10.1007/s12555-010-0105-z
|
[2] |
A. Isidori, L. Marconi, and A. Serrani, Robust autonomous guidance: an internal model approach. Springer Science & Business Media, 2012.
|
[3] |
L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart, S. Leutenegger, R. Carloni, S. Stramigioli, H. Bruyninckx, P. Doherty, A. Kleiner, V. Lippiello, A. Finzi, B. Siciliano, A. Sala, and N. Tomatis, " The SHERPA project: smart collaboration between humans and ground-aerial robots for improving rescuing activities in alpine environments, ” in Proc. 2012 IEEE Int. Symposium on Safety, Security, and Rescue Robotics (SSRR), 2012, pp. 1–4.
|
[4] |
P. B. Sujit, S. Saripalli, and J. B. Sousa, " Unmanned aerial vehicle path following: a survey and analysis of algorithms for fixed-wing unmanned aerial vehicles,” IEEE Control Systems, vol. 34, no. 1, pp. 42–59, 2014. doi: 10.1109/MCS.2013.2287568
|
[5] |
A. P. Aguiar, J. P. Hespanha, and P. V. Kokotovic, " Performance limi-tations in reference tracking and path following for nonlinear systems,” Automatica, vol. 44, no. 3, pp. 598–610, 2008. doi: 10.1016/j.automatica.2007.06.030
|
[6] |
L. Furieri, T. Stastny, L. Marconi, R. Siegwart, and I. Gilitschenski, " Gone with the wind: nonlinear guidance for small fixed-wing aircraft in arbitrarily strong windfields, ” in Proc. 2017 American Control Conf. (ACC’17), pp. 4254–4261.
|
[7] |
D. Invernizzi and M. Lovera, " Trajectory tracking control of thrustvectoring UAVs,” Automatica, vol. 95, pp. 180–186, 2018. doi: 10.1016/j.automatica.2018.05.024
|
[8] |
D. V. Dimarogonas, " Sufficient conditions for decentralized potential functions based controllers using canonical vector fields,” IEEE Transactions on Automatic Control, vol. 57, no. 10, pp. 2621–2626, 2012. doi: 10.1109/TAC.2012.2191319
|
[9] |
M. Kothari, I. Postlethwaite, and D.-W. Gu, " UAV path following in windy urban environments,” Journal of Intelligent &Robotic Systems, vol. 74, no. 3-4, pp. 1013–1028, 2014.
|
[10] |
F. Gavilan, R. Vazquez, and S. Esteban, " Trajectory tracking for fixedwing UAV using model predictive control and adaptive backstepping,” in Proc. 1st IFAC Workshop on Advanced Control and Navigation for Autonomous Aerospace Vehicles (ACNAAV’15), pp. 132-137, pp. 132–137, 2015.
|
[11] |
J. Chang, J. Cieslak, J. Dávila, A. Zolghadri, and J. Zhou, " Analysis and design of second-order sliding-mode algorithms for quadrotor roll and pitch estimation,” ISA Trans., pp. 495–512, 2017.
|
[12] |
G. Casadei, L. Furieri, N. Mimmo, R. Naldi, and L. Marconi, " Internal model-based control for loitering maneuvers of UAVs, ” in Proc. 2016 European Control Conf. (ECC), pp. 672–677.
|
[13] |
J. Chang, J. Cieslak, J. Davila, J. Zhou, A. Zolghadri, and Z. Guo, " A two-step approach for an enhanced quadrotor attitude estimation via imu data,” IEEE Trans. on Control Systems Technology, vol. 26, no. 3, pp. 1140–1148, 2018. doi: 10.1109/TCST.2017.2695164
|
[14] |
B. Zhou, H. Satyavada, and S. Baldi, " Adaptive path following for unmanned aerial vehicles in time-varying unknown wind environment,” in Proc. American Control Conf. (ACC’17), pp. 1127–1132, 2017.
|
[15] |
N. Cho and Y. Kim, " Three-Dimensional nonlinear differential geometric path-following guidance law,” Journal of Guidance,Control,and Dynamics, vol. 38, no. 12, pp. 948–954, 2015.
|
[16] |
H. Chen, K. Chang, and C. S. Agate, " UAV path planning with tangentplus-lyapunov vector field guidance and obstacle avoidance,” IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 2, pp. 840–856, 2013. doi: 10.1109/TAES.2013.6494384
|
[17] |
D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard, " Vector field path following for miniature air vehicles,” IEEE Transactions on Robotics, vol. 23, no. 3, pp. 519–529, 2007. doi: 10.1109/TRO.2007.898976
|
[18] |
S. Baldi, S. Yuan, and P. Frasca, " Output synchronization of unknown heterogeneous agents via distributed model reference adaptation,” IEEE Transactions on Control of Network Systems, 2018.
|
[19] |
S. Baldi and P. Frasca, " Adaptive synchronization of unknown heterogeneous agents: an adaptive virtual model reference approach,” Journal of the Franklin Institute, vol. 356, no. 2, pp. 935–955, 2019. doi: 10.1016/j.jfranklin.2018.01.022
|
[20] |
S. Baldi, " Cooperative output regulation of heterogeneous unknown systems via passification-based adaptation,” IEEE Control Systems Letters, vol. 2, no. 1, pp. 151–156, 2018. doi: 10.1109/LCSYS.2017.2778009
|
[21] |
Y. Abou Harfouch, S. Yuan, and S. Baldi, " An adaptive switched control approach to heterogeneous platooning with inter-vehicle communication losses,” IEEE Transactions on Control of Network Systems, vol. 5, no. 3, pp. 1434–1444, 2018. doi: 10.1109/TCNS.2017.2718359
|
[22] |
S. Baldi, M. R. Rosa, and P. Frasca, " Adaptive state-feedback synchronization with distributed input: the cyclic case,” in Proc. 7th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NECSYS), Groningen, The Netherlands, 2018.
|
[23] |
S. Baldi, I. A. Azzollini, and E. B. Kosmatopoulos, " A distributed disagreement-based protocol for synchronization of uncertain heterogeneous agents,” European Control Conf.,Limassol,Cyprus, 2018.
|
[24] |
Y. Abou Harfouch, S. Yuan, and S. Baldi, " An adaptive switched control approach to heterogeneous platooning with inter-vehicle communication losses,” in Proc. 20th IFAC World Congr., Toulouse, France, pp. 1382–1387, 2017.
|
[25] |
B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems. John Wiley & Sons, 2015.
|
[26] |
R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory and Practice. Princeton University Press, 2012.
|
[27] |
" Dryden wind turbulence model (discrete) Simulink, ” 2019. [Online]. Available: https://nl.mathworks.com/help/aeroblks/wind.html
|
[28] |
" Aerospace block-set Simulink, ” 2019. [Online]. Available: https://nl.mathworks.com/help/aeroblks/index.html
|
[29] |
S. Farì, " Guidance and control for a fixed-wing UAV, ” M.S. thesis, POLIMI. , IT, 2017.
|
[30] |
" Ardupilot documentation, ” 2019. [Online]. Available: http://ardupilot.org/
|
[31] |
" Learning the ardupilot codebase, ” 2019. [Online]. Available: http://ardupilot.org/dev/docs/learning-the-ardupilot-codebase.html
|
[32] |
" Roll, pitch and yaw controller tuning, ” 2019. [Online]. Available: http://ardupilot.org/plane/docs/roll-pitch-controller-tuning.html
|
[33] |
L. Meier, D. Honegger, and M. Pollefeys, " Px4: a node-based multithreaded open source robotics framework for deeply embedded platforms, ” in Proc. 2015 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 6235–6240.
|
[34] |
" Hkpilot32 flight controller, ” 2019. [Online]. Available: https://docs.px4.io/en/flight-controller/HKPilot32.html
|