A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 5
Sep.  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Ali Azarbahram, Amir Amini and Mahdi Sojoodi, "Resilient Fixed-Order Distributed Dynamic Output Feedback Load Frequency Control Design for Interconnected Multi-Area Power Systems," IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1139-1151, Sept. 2019. doi: 10.1109/JAS.2019.1911687
Citation: Ali Azarbahram, Amir Amini and Mahdi Sojoodi, "Resilient Fixed-Order Distributed Dynamic Output Feedback Load Frequency Control Design for Interconnected Multi-Area Power Systems," IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1139-1151, Sept. 2019. doi: 10.1109/JAS.2019.1911687

Resilient Fixed-Order Distributed Dynamic Output Feedback Load Frequency Control Design for Interconnected Multi-Area Power Systems

doi: 10.1109/JAS.2019.1911687
More Information
  • The paper proposes a novel $ H_\infty$ load frequency control (LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback (DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multi-area power systems which also include uncertainties and time-varying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality (LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed (and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.

     

  • loading
  • [1]
    H. Bevrani , T. Hiyama , " On load-frequency regulation with time delays: design and real-time implementation,” IEEE Trans. on Energy Convers. , vol. 24, no. 1, pp. 292–300, 2009. doi: 10.1109/TEC.2008.2003205
    [2]
    A. Ahmadi, M. Aldeen, " An LMI approach to the design of robust delay-dependent overlapping load frequency control of uncertain power systems,” Int. J. Electr. Power Energy Syst., vol. 81, pp. 48–63, 2016. doi: 10.1016/j.ijepes.2016.02.001
    [3]
    Y. Mi, Y. Fu, D. Li, C. Wang, P. C. Loh , P. Wang, " The sliding mode load frequency control for hybrid power system based on disturbance observer,” Int. J. Electr. Power Energy Syst., vol. 74, pp. 446–452, 2016. doi: 10.1016/j.ijepes.2015.07.014
    [4]
    Y. Sun , Y. Wang , Z. Wei , G. Sun , X. Wu, " Robust H1 load frequency control of multi-area power system with time delay: a sliding mode control approach,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 2, pp. 610–617, Mar. 2018. doi: 10.1109/JAS.2017.7510649
    [5]
    D. Qian , G. Fan, " Neural-network-based terminal sliding mode control for frequency stabilization of renewable power systems,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 3, pp. 706–717, May 2018. doi: 10.1109/JAS.2018.7511078
    [6]
    Y. Mi, X. Hao, Y. Liu, et al, " Sliding mode load frequency control for multi-area time-delay power system with wind power integration,” IET Gener. Transm. Amp Distrib., vol. 11, no. 18, pp. 4644–4653, 2017. doi: 10.1049/iet-gtd.2017.0600
    [7]
    Y. Cui, L. Xu, M. Fei, Y. Shen , " Observer based robust integral sliding mode load frequency control for wind power systems,” Control Eng. Pract., vol. 65, pp. 1–10, 2017. doi: 10.1016/j.conengprac.2017.05.001
    [8]
    S. Saxena, Y. V. Hote, " Decentralized PID load frequency control for perturbed multi-area power systems,” Int. J. Electr. Power Energy Syst., vol. 81, pp. 405–415, 2016. doi: 10.1016/j.ijepes.2016.02.041
    [9]
    T. H. Mohamed, G. Shabib, H. Ali , " Distributed load frequency control in an interconnected power system using ecological technique and coefficient diagram method,” Int. J. Electr. Power Energy Syst., vol. 82, pp. 496–507, 2016. doi: 10.1016/j.ijepes.2016.04.023
    [10]
    N. Chuang, " Robust H1 load-frequency control in interconnected power systems,” IET Control Theory Appl., vol. 10, no. 1, pp. 67–75, 2016. doi: 10.1049/iet-cta.2015.0412
    [11]
    Y. Zhang, X. Liu, B. Qu, " Distributed model predictive load frequency control of multi-area power system with DFIGs,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 1, pp. 125–135, Jan. 2017. doi: 10.1109/JAS.2017.7510346
    [12]
    X. Liu, Y. Zhang, K. Y. Lee, " Coordinated distributed MPC for load frequency control of power system with wind farms,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 5140–5150, 2017. doi: 10.1109/TIE.2016.2642882
    [13]
    M. Ma, C. Zhang, X. Liu, H. Chen, " Distributed model predictive load frequency control of the multi-area power system after deregulation,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 5129–5139, 2017. doi: 10.1109/TIE.2016.2613923
    [14]
    P. Ojaghi, M. Rahmani, " LMI-Based robust predictive load frequency control for power systems with communication delays,” IEEE Trans. Power Syst., vol. PP, no. 99, pp. 1–1, 2017.
    [15]
    X. Liu, X. Kong, K. Y. Lee, " Distributed model predictive control for load frequency control with dynamic fuzzy valve position modelling for hydrothermal power system,” IET Control Theory Amp Appl., vol. 10, no. 14, pp. 1653–1664, 2016. doi: 10.1049/iet-cta.2015.1021
    [16]
    X. Liu, Y. Zhang, K. Y. Lee, " Robust distributed MPC for load frequency control of uncertain power systems,” Control Eng. Pract., vol. 56, pp. 136–147, 2016. doi: 10.1016/j.conengprac.2016.08.007
    [17]
    C. Peng, J. Zhang, H. Yan, " Adaptive event-triggering hinfty load frequency control for network-based power systems,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1685–1694, 2018. doi: 10.1109/TIE.2017.2726965
    [18]
    C. Duan, C. K. Zhang, L. Jiang, W. Fang, W. Yao, " Structure-Exploiting delay-dependent stability analysis applied to power system load frequency control,” IEEE Trans. Power Syst., vol. 32, no. 6, pp. 4528–4540, 2017. doi: 10.1109/TPWRS.2017.2669316
    [19]
    Y. Arya , N. Kumar, " Optimal control strategybased AGC of electrical power systems: a comparative performance analysis,” Optimal Control Applications and Methods, vol. 38, no. 6, pp. 982–992, Nov. 2017. doi: 10.1002/oca.v38.6
    [20]
    Y. Arya , N. Kumar, " Fuzzy gain scheduling controllers for automatic generation control of two-area interconnected electrical power systems,” Electric Power Components and Systems, vol. 44, no. 7, pp. 737–751, Apr. 2016. doi: 10.1080/15325008.2015.1131765
    [21]
    Y. Arya, " Automatic generation control of two-area electrical power systems via optimal fuzzy classical controller,” Journal of the Franklin Institute, vol. 355, no. 5, pp. 2662–2688, Mar. 2018. doi: 10.1016/j.jfranklin.2018.02.004
    [22]
    Y. Arya , " Improvement in automatic generation control of two-area electric power systems via a new fuzzy aided optimal PIDN-FOI controller,” ISA Transactions, vol. 80, pp. 475–490, Sep. 2018. doi: 10.1016/j.isatra.2018.07.028
    [23]
    C. Zhang, L. Jiang, Q. H. Wu, Y. He, M. Wu, " Further results on delay-dependent stability of multi-area load frequency control,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4465–4474, 2013. doi: 10.1109/TPWRS.2013.2265104
    [24]
    C.-K. Zhang, L. Jiang, Q. H. Wu, Y. He, M. Wu, " Delay-Dependent robust load frequency control for time delay power systems,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2192–2201, 2013. doi: 10.1109/TPWRS.2012.2228281
    [25]
    A. N. Venkat, I. A. Hiskens, J. B. Rawlings, S. J. Wright, " Distributed MPC strategies with application to power system automatic generation control,” IEEE Trans. On Control Syst. Technol., vol. 16, no. 6, pp. 1192–1206, 2008. doi: 10.1109/TCST.2008.919414
    [26]
    T. H. Mohamed, H. Bevrani, A. A. Hassan, T. Hiyama, " Decentralized model predictive based load frequency control in an interconnected power system,” Energy Convers. Manag., vol. 52, no. 2, pp. 1208–1214, 2011. doi: 10.1016/j.enconman.2010.09.016
    [27]
    A. Yazdizadeh, M. H. Ramezani, E. Hamedrahmat, " Decentralized load frequency control using a new robust optimal MISO PID controller,” Int. J. Electr. Power Energy Syst., vol. 35, no. 1, pp. 57–65, 2012. doi: 10.1016/j.ijepes.2011.09.007
    [28]
    M. R. Toulabi, M. Shiroei, A. M. Ranjbar, " Robust analysis and design of power system load frequency control using the Kharitonov’s theorem,” Int. J. Electr. Power Energy Syst, vol. 55, pp. 51–58, 2014. doi: 10.1016/j.ijepes.2013.08.014
    [29]
    K. P. Parmar, S. Majhi, D. P. Kothari, " LFC of an interconnected power system with multi-source power generation in deregulated power environment,” Int. J. Electr. Power Energy Syst., vol. 57, pp. 277–286, 2014. doi: 10.1016/j.ijepes.2013.11.058
    [30]
    S. K. Pandey, S. R. Mohanty, N. Kishor, " A literature survey on loadfrequency control for conventional and distribution generation power systems,” Renew. Sustain. Energy Rev., vol. 25, pp. 318–334, 2013. doi: 10.1016/j.rser.2013.04.029
    [31]
    D.D. Siljak, Decentralized control of complex systems, Courier Dover Publications, 2011.
    [32]
    S. Sonmez, S. Ayasun, " Stability region in the parameter space of PI controller for a single-area load frequency control system with time delay,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 829–830, 2016. doi: 10.1109/TPWRS.2015.2412678
    [33]
    M. R. Sathya, M. Mohamed Thameem Ansari, " Load frequency control using Bat inspired algorithm based dual mode gain scheduling of PI controllers for interconnected power system,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 365–374, 2015. doi: 10.1016/j.ijepes.2014.07.042
    [34]
    M. H. Khooban, T. Niknam, F. Blaabjerg, T. Dragicevic, " A new load frequency control strategy for micro-grids with considering electrical vehicles,” Electr. Power Syst. Res., vol. 143, pp. 585–598, 2017. doi: 10.1016/j.jpgr.2016.10.057
    [35]
    C. Peng, J. Li, M. Fei, " Resilient event-triggering H1 load frequency control for multi-area power systems with energy-limited DoS attacks,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 4110–4118, 2017. doi: 10.1109/TPWRS.2016.2634122
    [36]
    T. N. Pham, H. Trinh, L. V. Hien, K. P. Wong, " Integration of electric vehicles for load frequency output feedback H1 control of smart grids,” IET Gener. Transm. Amp Distrib., vol. 10, no. 13, pp. 3341–3352, 2016. doi: 10.1049/iet-gtd.2016.0375
    [37]
    S. S. Stankovic, D. D. Siljak, " Robust stabilization of nonlinear interconnected systems by decentralized dynamic output feedback,” Syst. Control Lett., vol. 58, no. 4, pp. 271–275, 2009. doi: 10.1016/j.sysconle.2008.11.003
    [38]
    H. Li , X. Jing , HR. Karimi, " Output-Feedback-Based H1 control for vehicle suspension systems with control delay,” IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 436–446, Jan. 2014. doi: 10.1109/TIE.2013.2242418
    [39]
    M. Zribi, M. Al-Rashed, M. Alrifai , " Adaptive decentralized load frequency control of multi-area power systems,” Int. J. Electr. Power Energy Syst., vol. 27, no. 8, pp. 575–583, 2005. doi: 10.1016/j.ijepes.2005.08.013
    [40]
    H. J. Lee, J. B. Park, Y. H. Joo, " Robust load-frequency control for uncertain nonlinear power systems: a fuzzy logic approach,” Inf. Sci., vol. 176, no. 23, pp. 3520–3537, 2006. doi: 10.1016/j.ins.2006.01.003
    [41]
    D.D. Siljak, D.M. Stipanovic, " Autonomous decentralized control”, in Proc. of the Int. Mechanical Engineering Congr. and Exposition, 2001.
    [42]
    M. T. Alrifai, M. F. Hassan, M. Zribi, " Decentralized load frequency controller for a multi-area interconnected power system,” Int. J. Electr. Power Energy Syst., vol. 33, no. 2, pp. 198–209, 2011. doi: 10.1016/j.ijepes.2010.08.015

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (1905) PDF downloads(66) Cited by()

    Highlights

    • We incorporate a class of nonlinear terms in the model which can also be translated to uncertain system dynamics. The proposed control configuration comprises a DOF controller in series with an integral term to eliminate the tracking error. The DOF controller is fixed-order, implying that its order can be chosen arbitrarily based on the system conditions and other design constraints. Controller parameters are computed based on convex constrained optimization.
    • Computed control parameters are non-fragile so that the controllers can tolerate a predefined level of uncertainty with nominally designed values. In addition, time-varying communication time-delays are considered for each area. In this approach, controller input and output are local.
    • Designed controllers for each area are able to incorporate the output information of all or just the accessible subsystems to generate the control input signal.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return