IEEE/CAA Journal of Automatica Sinica
Citation: | Yangyang Chen, Rui Yu, Ya Zhang and Chenglin Liu, "Circular Formation Flight Control for Unmanned Aerial Vehicles With Directed Network and External Disturbance," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 505-516, Mar. 2020. doi: 10.1109/JAS.2019.1911669 |
[1] |
D. C. Folta, L. K. Newman, and T. Gardner, “Foundations of formation flying for mission to planet Earth and new millenium,” in Proc. AIAA/AAS Astrodynamics Conf., AIAA, Reston, VA, USA, pp. 656−666, 1996.
|
[2] |
D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey of spacecraft formation flying guidance and control (Part II): control,” in Proc. American Control Conf., Boston, MA, USA, pp. 2976−2985, 2004.
|
[3] |
NASA. Lunar Precursor Robotic Program [Online], available: http://www.nasa.gov/exploration/acd/lunar.html, March 1, 2018.
|
[4] |
NASA. Robotic Mars Exploration [Online], available: http://www.nasa.gov/missionpages/mars/main/index.html, March 1, 2018.
|
[5] |
N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. M. Frantantoni, and R. E. Davis, “Collective motion, sensor networks, and ocean sampling,” Proc. IEEE, vol. 95, no. 1, pp. 48–74, 2007. doi: 10.1109/JPROC.2006.887295
|
[6] |
S. Chris, B. Rich, and A. M. Craig, “Satellite formtion flying design and evolution,” J. Spaceaft and Rockets, vol. 38, no. 2, pp. 270–278, 2001. doi: 10.2514/2.3681
|
[7] |
W. Ren and R. W. Beard, “Decentralized scheme for spacecraft formation flying via the virtual structure approach,” J. Guidance Control and Dynamics, vol. 27, no. 1, pp. 73–82, 2004. doi: 10.2514/1.9287
|
[8] |
M. C. Vandyke and C. D. Hall, “Decentralized coordinated attitude control within a formation of spacecraft,” J. Guidance Control and Dynamics, vol. 29, no. 5, pp. 1101–1109, 2006. doi: 10.2514/1.17857
|
[9] |
Z. Chen, H.-T. Zhang, M.-C. Fan, D. Wang, and D. Li, “Algorithms and experiments on flocking of multi-agents in a bounded space,” IEEE Trans. Control Systems Technology, vol. 22, no. 4, pp. 1544–1549, 2014. doi: 10.1109/TCST.2013.2279166
|
[10] |
J. A. Marshall, M. E. Broucke, and B. A. Francis, “Formations of vehicles in cyclic pursuit,” IEEE Trans. Automatic Control, vol. 49, no. 11, pp. 1963–1974, 2004. doi: 10.1109/TAC.2004.837589
|
[11] |
R. Sepulchre, D. A. Paley, and N. E. Leonard, “Stabilization of planar collective motion: with limited communication,” IEEE Trans. Automatic Control, vol. 53, no. 3, pp. 706–719, 2008. doi: 10.1109/TAC.2008.919857
|
[12] |
F. Zhang and N. E. Leonard, “Coordinated patterns of unit speed particles on a closed curve,” Systems and Control Letters, vol. 56, no. 6, pp. 397–407, 2007. doi: 10.1016/j.sysconle.2006.10.027
|
[13] |
Y.-Y. Chen and Y.-P. Tian, “A curve extension design for coordinated path following control of unicycles along given convex loops,” Int. J. Control, vol. 84, no. 10, pp. 1729–1745, 2011. doi: 10.1080/00207179.2011.625045
|
[14] |
Y.-Y. Chen and Y.-P. Tian, “Formation tracking and attitude synchronization control of underactuated ships along closed orbits,” Int. J. Robust and Nonlinear Control, vol. 25, no. 16, pp. 2023–2044, 2015.
|
[15] |
R. H. Zheng, Z. Y. Lin, M. Y. Fu, and D. Sun, “Distributed control for uniform circumnavigation of ring-coupled unicycles,” Automatica, vol. 53, pp. 23–29, 2015. doi: 10.1016/j.automatica.2014.11.012
|
[16] |
H.-T. Zhang, Z. Chen, and M.-C. Fan, “Collaborative control of multi-vehicle systems in diverse motion patterns,” IEEE Trans. Control Systems Technology, vol. 24, no. 4, pp. 1488–1494, 2016. doi: 10.1109/TCST.2015.2487864
|
[17] |
J. Ghommam and F. Mnif, “Coordinated path-following control for a group of underactuated surface vessels,” IEEE Trans. Industrial Electronics, vol. 56, no. 10, pp. 3951–3963, 2009. doi: 10.1109/TIE.2009.2028362
|
[18] |
K. D. Do and J. Pan, “Nonlinear formation control of unicycle-type mobile robots,” Robotics and Autonomous Systems, vol. 55, no. 3, pp. 191–204, 2007. doi: 10.1016/j.robot.2006.09.001
|
[19] |
X. W. Dong and G. Q. Hu, “Time-varying formation tracking for linear multiagent systems with multiple leaders,” IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3658–3664, 2017. doi: 10.1109/TAC.2017.2673411
|
[20] |
D. A. Paley, “Stabilization of collective motion on a sphere,” Automaica, vol. 45, no. 1, pp. 212–216, 2009. doi: 10.1016/j.automatica.2008.06.012
|
[21] |
J. D. Zhu, “Synchronization of Kuramoto model in a high-dimensional linear space,” Physics Letters A, vol. 377, no. 41, pp. 2939–2943, 2013. doi: 10.1016/j.physleta.2013.09.010
|
[22] |
W. J. Song, J. Markdahl, S. L. Zhang, X. M. Hu, and Y. G. Hong, “Intrinsic reduced attitude formation with ring inter-agent graph,” Automatica, vol. 85, pp. 193–201, 2017. doi: 10.1016/j.automatica.2017.07.015
|
[23] |
S. L. Zhang, W. J. Song, F. H. He, Y. G. Hong, and X. M. Hu, “Intrinsic tetrahedron formation of reduced attitude,” Automatica, vol. 87, pp. 375–382, 2018. doi: 10.1016/j.automatica.2017.10.023
|
[24] |
P. K. C. Wang and F. Y. Hadaegh, “Coordination and Control of Multiple Microspacecraft Moving in Formation,” J. Astronautical Sciences, vol. 44, no. 3, pp. 315–355, 1996.
|
[25] |
V. Kapila, A. G. Sparks, J. M. Buffington, and Q. G. Yan, “Spacecraft formation flying: dynamics and control,” J. Guidance,Control,and Dynamics, vol. 23, no. 3, pp. 561–563, 2000. doi: 10.1109/ACC.1999.786328
|
[26] |
W. Kang, A. Sparks, and S. Banda, “Coordinated control of multisatellite systems,” J. Guidance,Control,and Dynamics, vol. 24, no. 2, pp. 360–368, 2001. doi: 10.2514/2.4720
|
[27] |
W. Ren, “Formation keeping and attitude alignment for multiple spacecraft through local interactions,” J. Guidance,Control,and Dynamics, vol. 30, no. 2, pp. 633–638, 2007. doi: 10.2514/1.25629
|
[28] |
T. H. Kim and T. Sugie, “Cooperative control for target-capturing task based on a cyclic pursuit strategy,” Automatica, vol. 43, no. 8, pp. 1426–1431, 2007. doi: 10.1016/j.automatica.2007.01.018
|
[29] |
T. H. Kim, S. Hara, and Y. Hori, “Cooperative control of multi-agent dynamical systems in target-enclosing operations using cyclic pursuit strategy,” Int. J. Control, vol. 83, no. 10, pp. 2040–2052, 2010. doi: 10.1080/00207179.2010.504784
|
[30] |
S. L. Zhang, F. H. He, Y. Yao, and X. M. Hu, “Spherical formation of regular tetrahedra,” in Proc. 36th Chinese Control Conf., Dalian, China, pp. 1317−1322, 2017.
|
[31] |
Z. H. Peng, D. Wang, Z. Y. Chen, X. J Hu, and W. Y. Lan, “Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics,” IEEE Trans. Control Systems Technology, vol. 21, no. 2, pp. 513–520, 2013. doi: 10.1109/TCST.2011.2181513
|
[32] |
R. Kristiansen and P. J. Nicklasson, “Spacecraft formation flying: a review and new results on state feedback control,” Acta Astronautica, vol. 65, no. 11−12, pp. 1537–1552, 2009. doi: 10.1016/j.actaastro.2009.04.014
|
[33] |
R. Mellish, S. Napora, and D. A. Paley, “Backstepping control design for motion coordination of self-propelled vehicles in a flowfield,” Int. J. Robust and Nonlinear Control, vol. 21, no. 12, pp. 1452–1466, 2011. doi: 10.1002/rnc.1702
|
[34] |
Y.-Y. Chen and Y.-P. Tian, “Coordinated path following control of multiunicycle formation motion around closed curves in a time-invariant flow,” Nonlinear Dynamics, vol. 81, no. 1, pp. 1005–1016, 2015.
|
[35] |
T. Summers, M. Akella, and M. Mears, “Coordinated standoff tracking of moving targets: control laws and information architectures,” J. Guidance,Control,and Dynamics, vol. 32, no. 1, pp. 56–69, 2009. doi: 10.2514/1.37212
|
[36] |
C. Peterson and D. Paley, “Multi-vehicle coordination in an estimated timevarying flowfield,” J. Guidance,Control,and Dynamics, vol. 34, no. 1, pp. 177–191, 2011. doi: 10.2514/1.50036
|
[37] |
C. Peterson and D. Paley, “Distributed estimation for motion coordination in an unknown spatially varying flowfield,” J. Guidance,Control,and Dynamics, vol. 36, no. 3, pp. 894–898, 2013. doi: 10.2514/1.59453
|
[38] |
Y.-Y. Chen, Y. Zhang, and Z.-Z. Wang, “An adaptive backstepping design for formation tracking motion in an unknown Eulerian specification flowfield,” J. Franklin Institute, vol. 354, no. 14, pp. 6217–6233, 2017. doi: 10.1016/j.jfranklin.2017.07.020
|
[39] |
Y.-Y. Chen, Z.-Z. Wang, Y. Zhang, C. L. Liu, and Q. Wang, “A geometric extension design for spherical formation tracking control of second-order agents in unknown spatiotemporal flowfields,” Nonlinear Dynamics, vol. 88, no. 2, pp. 1173–1186, 2017. doi: 10.1007/s11071-016-3303-2
|
[40] |
Y.-Y. Chen, Y. Zhang, C. L. Liu, and Q. Wang, “Formation circumnavigation for unmanned aerial vehicles using relative measurements with an uncertian dynamic target,” Nonlinear Dynamics, pp. 1–17, 2019. doi: 10.1007/s11071-019-05126-y
|
[41] |
Y.-Y. Chen, X. Ai, and Y. Zhang, “Spherical formation tracking control for second-order agents with unknown general flowfields and strongly connected topologies,” Int. J. Robust and Nonlinear Control, pp. 1–22, 2019. doi: 10.1002/rnc.4576
|
[42] |
S. S. Vaddi, S. R. Vadali, and K. T. Alfriend, “Formation flying: accommodating nonlinearity and eccentricity perturbations,” J. Guidance,Control,and Dynamics, vol. 26, no. 2, pp. 214–223, 2003. doi: 10.2514/2.5054
|
[43] |
G. Godard, K. D. Kumar, and A. M. Zou, “Robust stationkeeping and reconfiguration of underactuated spacecraft formations,” Acta Astronautica, vol. 105, no. 2, pp. 495–510, 2014. doi: 10.1016/j.actaastro.2014.10.008
|
[44] |
B.-Q. Zhang and S.-M. Song, “Decentralized coordinated control for multiple spacecraft formation maneuvers,” Acta Astronautica, vol. 74, no. 74, pp. 79–97, 2012.
|
[45] |
D. C. Ran, X. Q. Chen, and A. K. Misra, “Finite time coordinated formation control for spacecraft formation flying under directed communication topology,” Acta Astronautica, vol. 136, pp. 125–136, 2017. doi: 10.1016/j.actaastro.2017.01.010
|
[46] |
Z. K. Li, G. H. Wen, Z. S. Duan, and W. Ren, “Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 1152–1157, 2015. doi: 10.1109/TAC.2014.2350391
|
[47] |
M. P. Carmo, Differential Geometry of Surfaces, Englewood Cliffs, 1976.
|
[48] |
W. Ren and R. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,” IEEE Trans. Autom. Control, vol. 50, no. 5, pp. 655–661, 2005. doi: 10.1109/TAC.2005.846556
|
[49] |
R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE Trans. Autom. Control, vol. 52, pp. 401–420, 2006.
|
[50] |
H. K. Khalil, Nonlinear Systems (2nd ed.), Upper Saddle River, NJ: Prentice-Hall, 1996.
|