IEEE/CAA Journal of Automatica Sinica
Citation: | Dongxiang Chen, Zhijun Ding, Chungang Yan and Mimi Wang, "A Behavioral Authentication Method for Mobile Based on Browsing Behaviors," IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1528-1541, Nov. 2020. doi: 10.1109/JAS.2019.1911648 |
[1] |
iiMedia. 2017−2018 Chinese mobile electricity supplier industry research report. [Online]. Available: http://www.iimedia.cn/61300.html. Accessed May 08, 2018.
|
[2] |
iiMedia. 2017−2018 Chinese third party mobile payment market research report. [Online]. Available: http://www.iimedia.cn/61209.html. Accessed Apr. 23, 2018.
|
[3] |
S. Minaee and Y. Wang, “Fingerprint recognition using translation invariant scattering network,” arXiv: 1509.03542, 2015.
|
[4] |
Y. H. Ding, A. Rattani, and A. Ross, “Bayesian belief models for integrating match scores with liveness and quality measures in a fingerprint verification system,” in Proc. Int. Conf. Biometrics, Halmstad, Sweden, 2016, pp. 1−8.
|
[5] |
Chandana, S. Yadav, and M. Mathuria, “Fingerprint recognition based on minutiae information,” Int. J. Comput. Appl., vol. 120, no. 10, pp. 39–42, Jun. 2015.
|
[6] |
M. Lastra, J. Carabaño, P. D. Gutiérrez, J. M. Benítez, and F. Herrera, “Fast fingerprint identification using GPUs,” Inf. Sci., vol. 301, pp. 195–214, Apr. 2015. doi: 10.1016/j.ins.2014.12.052
|
[7] |
R. D. Labati, A. Genovese, V. Piuri, and F. Scotti, “Toward unconstrained fingerprint recognition: A fully touchless 3-D system based on two views on the move,” IEEE Trans.,Syst.,Man,Cybern., vol. 46, no. 2, pp. 202–219, Feb. 2016. doi: 10.1109/TSMC.2015.2423252
|
[8] |
O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in Proc. British Machine Vision Conf., Swansea, UK, 2015, pp. 41.1−41.12.
|
[9] |
Y. Sun, X. G. Wang, and X. O. Tang, “Hybrid deep learning for face verification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 10, pp. 1997–2009, Oct. 2016. doi: 10.1109/TPAMI.2015.2505293
|
[10] |
C. X. Ding, J. Choi, D. C. Tao, and L. S. Davis, “Multi-directional multi-level dual-cross patterns for robust face recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 3, pp. 518–531, Mar. 2016. doi: 10.1109/TPAMI.2015.2462338
|
[11] |
L. L. Liu, T. D. Tran, and S. P. Chin, “Partial face recognition: A sparse representation-based approach,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Shanghai, China, 2016, pp. 2389−2393.
|
[12] |
J. Daugman, “New methods in iris recognition,” IEEE Trans. Syst.,Man,Cybern.,Part B (Cybern.)
|
[13] |
Q. Liu, M. M. Wang, P. H. Zhao, C. G. Yan, and Z. J. Ding, “A behavioral authentication method for mobile gesture against resilient user posture,” in Proc. 3rd Int. Conf. Systems and Informatics, Shanghai, China, 2017, pp. 324−331.
|
[14] |
A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann, “Touch me once and i know it’s you!: Implicit authentication based on touch screen patterns,” in Proc. SIGCHI Conf. Human Factors in Computing Systems, Austin, USA, 2012, pp. 987−996.
|
[15] |
Y. H. Wu, “A mobile authentication method based on touchscreen behavior for password pattern,” J. Comput. Inf. Syst., vol. 11, no. 22, pp. 8111–8122, 2015.
|
[16] |
T. Feng, Z. Y. Liu, K. A. Kwon, W. D. Shi, B. Carbunar, Y. F. Jiang, and N. Nguyen, “Continuous mobile authentication using touchscreen gestures,” in Proc. IEEE Conf. Technologies for Homeland Security, Waltham, USA, 2013, pp. 451−456.
|
[17] |
T. Feng, X. Zhao, B. Carbunar, and W. D. Shi, “Continuous mobile authentication using virtual key typing biometrics,” in Proc. 12th IEEE Int. Conf. Trust, Security and Privacy in Computing and Communications, Melbourne, Australia, 2013, pp. 1547−1552.
|
[18] |
M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, “Touchalytics: On the applicability of touchscreen input as a behavioral biometric for continuous authentication,” IEEE Trans. Inf. Forens. Secur., vol. 8, no. 1, pp. 136–148, Jan. 2013. doi: 10.1109/TIFS.2012.2225048
|
[19] |
J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches in logarithmic expected time,” ACM Trans. Math. Softw., vol. 3, no. 3, pp. 209–226, Sept. 1977. doi: 10.1145/355744.355745
|
[20] |
C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sept. 1995.
|
[21] |
C. Shen, Y. Zhang, Z. M. Cai, T. W. Yu, and X. H. Guan, “Touch-interaction behavior for continuous user authentication on smartphones,” in Proc. Int. Conf. Biometrics, Phuket, Thailand, 2015, pp. 157−162.
|
[22] |
B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support vector method for novelty detection,” in Proc. 12th Int. Conf. Neural Information Processing Systems, Denver, USA, 1999, pp. 582−588.
|
[23] |
S. M. Sagave and B. A. Chaugule, “Continuous touchscreen mobile authentication using several gestures,” Int. J. Emerg. Res. Manage. Technol., vol. 3, no. 6, pp. 52–55, 2014.
|
[24] |
T. Feng, J. Yang, Z. X. Yan, E. M. Tapia, and W. D. Shi, “Tips: Context-aware implicit user identification using touch screen in uncontrolled environments,” in Proc. 15th Workshop on Mobile Computing Systems and Applications, Santa Barbara, USA, 2014, pp. 1−6.
|
[25] |
H. Xu, Y. F. Zhou, and M. R. Lyu, “Towards continuous and passive authentication via touch biometrics: An experimental study on smartphones,” in Proc. 10th Symp. Usable Privacy and Security, Menlo Park, USA, 2014, pp. 187−198.
|
[26] |
A. Roy, T. Halevi, and N. Memon, “An HMM-based multi-sensor approach for continuous mobile authentication,” in Proc. IEEE Military Communications Conf., Tampa, USA, 2015, pp. 1311−1316.
|
[27] |
M Ester, H. P. Kriegel, J. Sander, and X. W. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining, Portland, USA, 1996, pp. 226−231.
|
[28] |
P. Trikha and S. Vijendra, “Fast density based clustering algorithm,” Int. J. Mach. Learn. Comput., vol. 3, no. 1, pp. 10–12, Feb. 2013.
|
[29] |
L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken, USA: John Wiley & Sons, 1990.
|
[30] |
R. Liu and H. Zhang, “Segmentation of 3D meshes through spectral clustering,” in Proc. 12th Pacific Conf. Computer Graphics and Applications, Seoul, South Korea, 2004, pp. 298−305.
|
[31] |
R. T Ng and J. W. Han, “Efficient and effective clustering methods for spatial data mining,” in Proc. 20th Int. Conf. Very Large Data Bases, Santiago de Chile, Chile, 1994, pp. 144−155.
|
[32] |
J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proc. 5th Berkeley Symp. Mathematical Statistics and Probability, Berkeley, USA, 1967, pp. 281−297.
|
[33] |
Z. Fang and C. Zhang, “An improved k-means clustering algorithm,” J. Dalian Nationalities University, vol. 9, no. 1, pp. 44–46, 2011.
|
[34] |
P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–65, Nov. 1987. doi: 10.1016/0377-0427(87)90125-7
|
[35] |
R. A Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Human Genet., vol. 7, no. 2, pp. 179–188, Sep. 1936.
|
[36] |
A. B. Musa, “Comparative study on classification performance between support vector machine and logistic regression,” Int. J. Mach. Learn. Cybern., vol. 4, no. 1, pp. 13–24, Feb. 2013. doi: 10.1007/s13042-012-0068-x
|
[37] |
B. S. Everitt, “Classification and regression trees,” Encyclopedia of Statistics in Behavioral Science, B. S. Everitt and D, Howell, Eds. New York, USA: John Wiley and Sons, Ltd, 2005.
|
[38] |
J. R Quinlan, “Induction on decision tree,” Mach. Learn., vol. 1, no. 1, pp. 81–106, 1986.
|
[39] |
Y. F. Yao and L. T. Xing, “Improvement of c4.5 decision tree continuous attributes segmentation threshold algorithm and its application,” J. Central South Univ. (Sci. Technol.)
|
[40] |
C. Y. Zhang and J. Wang, “Attribute weighted naive bayesian classification algorithm,” in Proc. 5th Int. Conf. Computer Science & Education, Hefei, China, 2010, pp. 27−30.
|
[41] |
F. J. Pineda, “Generalization of back-propagation to recurrent neural networks,” Phys. Rev. Lett., vol. 59, no. 19, pp. 2229–2232, Nov. 1987. doi: 10.1103/PhysRevLett.59.2229
|
[42] |
S. F. Ding, C. Y. Su, and J. Z. Yu, “An optimizing BP neural network algorithm based on genetic algorithm,” Artif. Intell. Rev., vol. 36, no. 2, pp. 153–162, Feb. 2011. doi: 10.1007/s10462-011-9208-z
|
[43] |
L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001. doi: 10.1023/A:1010933404324
|
[44] |
Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line learning and an application to boosting,” in Proc. 2nd European Conf. Computational Learning Theory, Barcelona, Spain, 1995, pp. 23−37.
|
[45] |
L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, Aug. 1996.
|
[46] |
K. A. Spackman, “Signal detection theory: Valuable tools for evaluating inductive learning,” in Proc. 6th Int. Workshop on Machine Learning, New York, USA, 1989, pp. 160−163.
|