IEEE/CAA Journal of Automatica Sinica
Citation: | Long Chen, Linqing Wang, Zhongyang Han, Jun Zhao and Wei Wang, "Variational Inference Based Kernel Dynamic Bayesian Networks for Construction of Prediction Intervals for Industrial Time Series With Incomplete Input," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1437-1445, Sept. 2020. doi: 10.1109/JAS.2019.1911645 |
[1] |
F. Jin, J. Zhao, C. Sheng, and W. Wei, “Causality diagram-based scheduling approach for blast furnace gas system,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 587–594, 2018. doi: 10.1109/JAS.2017.7510715
|
[2] |
H. Zhao, H. Liu, W. Hu, and X. Yan, “Anomaly detection and fault analysis of wind turbine components based on deep learning network,” Renewable Energy, vol. 127, pp. 825–834, 2018. doi: 10.1016/j.renene.2018.05.024
|
[3] |
X. Wang, “Ladle furnace temperature prediction model based on large-scale data with random forest,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 770–774, 2017. doi: 10.1109/JAS.2016.7510247
|
[4] |
A. Kavousi-Fard, A. Khosravi, and S. Nahavandi, “Reactive power compensation in electric arc furnaces using prediction intervals,” IEEE Trans. Industrial Electronics, vol. 64, no. 7, pp. 5295–5304, 2017. doi: 10.1109/TIE.2017.2677345
|
[5] |
Z. Chang, Z. Wang, B. Jiang, et al., “Modeling and predicting of aeronautical thin-walled sheet metal parts riveting deformation,” Assembly Automation, vol. 36, no. 3, pp. 295–307, 2016. doi: 10.1108/AA-10-2015-077
|
[6] |
M. Xu and M. Han, “Adaptive elastic echo state network for multivariate time series prediction,” IEEE Trans. Cybernetics, vol. 46, no. 10, pp. 2173–2183, 2017.
|
[7] |
M. Fliess, C. Join, and C. Voyant, “Prediction bands for solar energy: New short-term time series forecasting techniques,” Solar Energy, vol. 166, pp. 519–528, 2018. doi: 10.1016/j.solener.2018.03.049
|
[8] |
D. B. Jani, M. Mishra, and P. K. Sahoo, “Application of artificial neural network for predicting performance of solid desiccant cooling systems - A review,” Renewable and Sustainable Energy Reviews, vol. 80, pp. 352–366, 2017. doi: 10.1016/j.rser.2017.05.169
|
[9] |
D. W. V. D. Meer, M. Shepero, A. Svensson, et al., “Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian processes,” Applied Energy, vol. 213, pp. 195–207, 2018. doi: 10.1016/j.apenergy.2017.12.104
|
[10] |
J. P. Jacobs, “Bayesian support vector regression with automatic relevance determination kernel for modeling of antenna input characteristics,” IEEE Trans. Antennas and Propagation, vol. 60, no. 60, pp. 2114–2118, 2012.
|
[11] |
J. Zhao, Q. Liu, W. Pedrycz, and D. X. Li, “Effective noise estimation-based online prediction for byproduct gas system in steel industry,” IEEE Trans. Industrial Informatics, vol. 8, no. 4, pp. 953–963, 2012. doi: 10.1109/TII.2012.2205932
|
[12] |
J. Zhao, Q. Liu, W. Wang, W. Pedrycz, and L. Q. Chen, “Hybrid neural prediction and optimized adjustment for coke oven gas system in steel industry,” IEEE Trans. Neural Networks and Learning Systems, vol. 23, no. 3, pp. 439–450, 2012. doi: 10.1109/TNNLS.2011.2179309
|
[13] |
A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, “Comprehensive review of neural network-based prediction intervals and new advances,” IEEE Trans. Neural Networks, vol. 22, pp. 1341–1356, 2011. doi: 10.1109/TNN.2011.2162110
|
[14] |
P. L. Espinheira, S. L. P. Ferrari, and F. Cribari-Neto, “Bootstrap prediction intervals in beta regressions,” Computational Statistics, vol. 29, no. 5, pp. 1263–1277, 2014. doi: 10.1007/s00180-014-0490-5
|
[15] |
I. M. Galván, J. M. Valls, A. Cervantes, and R. Aler, “Multi-objective evolutionary optimization of prediction intervals for solar energy forecasting with neural networks,” Information Sciences, vol. 418, pp. 363–382, 2017.
|
[16] |
R. Li, C. Jiang, F. Zhu, and X. L. Chen, “Traffic flow data forecasting based on interval type-2 fuzzy sets theory,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 141–148, 2016. doi: 10.1109/JAS.2016.7451101
|
[17] |
J. T. Genehwang and A. Adamding, “Prediction intervals for artificial neural networks,” Publications of the American Statistical Association, vol. 92, no. 438, pp. 748–757, 1997. doi: 10.1080/01621459.1997.10474027
|
[18] |
L. Zhang, P. B. Luh, and K. Kasiviswanathan, “Energy clearing price prediction and confidence interval estimation with cascaded neural networks,” IEEE Trans. Power Systems, vol. 18, no. 1, pp. 99–105, 2003. doi: 10.1109/TPWRS.2002.807062
|
[19] |
D. A. Nix and A. S. Weigend, “Estimating the mean and variance of the target probability distribution,” in Proc. IEEE Int. Conf. Neural Netw., vol. 1, pp. 55–60. Orlando, FL, 1994.
|
[20] |
C. Sheng, J. Zhao, W. Wang, and H. Leung, “Prediction intervals for a noisy nonlinear time series based on a bootstrapping reservoir computing network ensemble,” IEEE Trans. Neural Networks and Learning Systems, vol. 24, no. 7, pp. 1036–1048, 2013. doi: 10.1109/TNNLS.2013.2250299
|
[21] |
S. Dang, S. Chaudhury, B. Lall, and P. K. Roy, “Tractography-based score for learning effective connectivity from multimodal imaging data using dynamic Bayesian networks,” IEEE Trans. Biomedical Engineering, vol. 65, no. 5, pp. 1057–1068, 2018.
|
[22] |
N. Yodo, P. Wang, and Z. Zhou, “Predictive resilience analysis of complex systems using dynamic Bayesian networks,” IEEE Trans. Reliability, vol. 66, no. 3, pp. 761–770, 2017. doi: 10.1109/TR.2017.2722471
|
[23] |
I. Nachman, G. Elidan, and N. Friedman, “‘Ideal Parent’ structure learning for continuous variable networks,” J. Machine Learning Research, vol. 8, pp. 1799–1833, 2007.
|
[24] |
C. Li and S. Mahadevan, “Efficient approximate inference in Bayesian networks with continuous variables,” Reliability Engineering and System Safety, vol. 169, pp. 269–280, 2018. doi: 10.1016/j.ress.2017.08.017
|
[25] |
L. Chen, Y. Liu, J. Zhao, et al., “Prediction intervals for industrial data with incomplete input using kernel-based dynamic Bayesian networks,” Artificial Intelligence Review, vol. 46, no. 3, pp. 307–326, 2016. doi: 10.1007/s10462-016-9465-y
|
[26] |
R. Fung and K. C. Chang, “Weighting and integrating evidence for stochastic simulation in Bayesian networks,” in Proc. Conf. Uncertainty in Artificial Intelligence, vol. 5, pp. 208–219, 1990.
|
[27] |
C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), New York: Springer-Verlag, 2006.
|